

Lecture Notes in Artificial Intelligence 4461
Edited by J.G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Sam Joseph Zoran Despotovic
Gianluca Moro Sonia Bergamaschi (Eds.)

Agents
and Peer-to-Peer
Computing

5th International Workshop, AP2PC 2006
Hakodate, Japan, May 9, 2006
Revised and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Sam Joseph
University of Hawaii, Dept. of Information and Computer Science
1680 East-West Road, POST 309, Honolulu, HI 96822, USA
E-mail: srjoseph@hawaii.edu

Zoran Despotovic
EPFL Lausanne, School of Computer and Communication Sciences
1015 Lausanne, Switzerland
E-mail: zoran.despotovic@epfl.ch

Gianluca Moro
University of Bologna, Dept. of Electronics, Computer Science and Systems
Via Venezia, 52, 47023 Cesena (FC), Italy
E-mail: gmoro@deis.unibo.it

Sonia Bergamaschi
University of Modena and Reggio-Emilia, Dept. of Science Engineering
via Vignolese, 905, 41100 Modena, Italy
E-mail: bergamaschi.sonia@unimo.it

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2.11, I.2, C.2.4, C.2, H.4, H.3, K.4.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-79704-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79704-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12265541 06/3180 5 4 3 2 1 0

Preface

Peer-to-peer (P2P) computing has attracted significant media attention, initially
spurred by the popularity of file-sharing systems such as Napster, Gnutella, and
Morpheus. More recently systems like BitTorrent and eDonkey have continued to
sustain that attention. New techniques such as distributed hash-tables (DHTs),
semantic routing, and Plaxton Meshes are being combined with traditional con-
cepts such as Hypercubes, Trust Metrics, and caching techniques to pool to-
gether the untapped computing power at the “edges” of the Internet. These new
techniques and possibilities have generated a lot of interest in many industrial
organizations, and have resulted in the creation of a P2P working group on stan-
dardization in this area (http://www.irtf.org/charter?gtype=rg&group=p2prg).

In P2P computing, peers and services forego central coordination and dy-
namically organize themselves to support knowledge sharing and collaboration,
in both cooperative and non-cooperative environments. The success of P2P sys-
tems strongly depends on a number of factors. First, the ability to ensure equi-
table distribution of content and services. Economic and business models which
rely on incentive mechanisms to supply contributions to the system are being
developed, along with methods for controlling the “free riding” issue. Second,
the ability to enforce provision of trusted services. Reputation-based P2P trust
management models are becoming a focus of the research community as a vi-
able solution. The trust models must balance both constraints imposed by the
environment (e.g., scalability) and the unique properties of trust as a social and
psychological phenomenon. Recently, we are also witnessing a move of the P2P
paradigm to embrace mobile computing in an attempt to achieve even higher
ubiquitousness. The possibility of services related to physical location and the
relation with agents in physical proximity could introduce new opportunities and
also new technical challenges.

Although researchers working on distributed computing, multi-agent systems,
databases, and networks have been using similar concepts for a long time, it is
only fairly recently that papers motivated by the current P2P paradigm have
started appearing in high-quality conferences and workshops. Research in agent
systems in particular appears to be most relevant because, since their inception,
multiagent systems have always been thought of as collections of peers.

The multiagent paradigm can thus be superimposed on the P2P architecture,
where agents embody the description of the task environments, the decision-
support capabilities, the collective behavior, and the interaction protocols of
each peer. The emphasis in this context on decentralization, user autonomy, dy-
namic growth, and other advantages of P2P also leads to significant potential
problems. Most prominent among these problems are coordination: the ability
of an agent to make decisions on its own actions in the context of activities
of other agents; and scalability: the value of the P2P systems lies in how well

VI Preface

they scale along several dimensions, including complexity, heterogeneity of peers,
robustness, traffic redistribution, and so forth. It is important to scale up coor-
dination strategies along multiple dimensions to enhance their tractability and
viability, and thereby to widen potential application domains. These two prob-
lems are common to many large-scale applications. Without coordination, agents
may be wasting their efforts, squandering resources, and failing to achieve their
objectives in situations requiring collective effort.

This workshop series brings together researchers working on agent systems and
P2P computing with the intention of strengthening this connection. Researchers
from other related areas such as distributed systems, networks, and database
systems are also welcome (and, in our opinion, have a lot to contribute). We
seek high-quality and original contributions on the general theme of “Agents
and P2P Computing.” The following is a non-exhaustive list of topics of special
interest:

– Intelligent agent techniques for P2P computing
– P2P computing techniques for multiagent systems
– The Semantic Web and semantic coordination mechanisms for P2P systems
– Scalability, coordination, robustness, and adaptability in P2P systems
– Self-organization and emergent behavior in P2P systems
– E-commerce and P2P computing
– Participation and contract incentive mechanisms in P2P systems
– Computational models of trust and reputation
– Community of interest building and regulation, and behavioral norms
– Intellectual property rights and legal issues in P2P systems
– P2P architectures
– Scalable data structures for P2P systems
– Services in P2P systems (service definition languages, service discovery, fil-

tering and composition etc.)
– Knowledge discovery and P2P data-mining agents
– P2P-oriented information systems
– Information ecosystems and P2P systems
– Security considerations in P2P networks
– Ad-hoc networks and pervasive computing based on P2P architectures and

wireless communication devices
– Grid computing solutions based on agents and P2P paradigms
– Legal issues in P2P networks

The workshop series emphasizes discussions about methodologies, models, algo-
rithms and technologies, strengthening the connection between agents and P2P
computing. These objectives are accomplished by bringing together researchers
and contributions from these two disciplines but also from more traditional areas
such as distributed systems, networks, and databases.

This volume is the post-proceedings of AP2PC 2006, the 5th International
Workshop on Agents and P2P Computing,1 held in Hakodate, Japan on May 9,

1 http://p2p.ingce.unibo.it/

Preface VII

2006 in the context of the Fifth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2005).

This volume brings together papers presented at AP2PC 2006, fully revised to
incorporate reviewers’ comments and discussions at the workshop. The volume
is organized according to the following sessions held at the workshop:

– Invited Paper
– P2P Infrastructure
– Agents in P2P
– P2P Search
– Applications

We would like to thank the invited speaker Raman Paranjape, Director of
Special Initiatives from TRLabs in Saskatchewan Canada, for his talk enti-
tled “Macroscopic Modeling of Information Flow in an Agent-Based Electronic
Health Record System.”

After the call for papers, we received 23 papers. All submissions were reviewed
for scope and quality, ten were accepted as full papers, and six as short papers.
We would like to thank the authors for their submissions and the members of
the Program Committee for reviewing the papers under time pressure and for
their support of the workshop. Finally, we would like to acknowledge the Steering
Committee for its guidance and encouragement.

This workshop followed the successful fourth edition, which was held in con-
junction with AAMAS in Utrecht in 2005. In recognition of the interdisciplinary
nature of P2P computing, a sister event called the International Workshop on
Databases, Information Systems, and P2P Computing2 was held in Trondheim,
Noray in August 2005 in conjunction with the International Conference on Very
Large Data Bases (VLDB).

September 2006 Sam Joseph
Zoran Despotovic

Gianluca Moro
Sonia Bergamaschi

2 http://dbisp2p.ingce.unibo.it/

Organization

Executive Committee

Organizers

Program Co-chairs Sam Joseph
Dept. of Information and Computer Science,
University of Hawaii
1680 East-West Road, POST 309, Honolulu, HI 96822
E-mail: srjoseph@hawaii.edu

Zoran Despotovic
School of Computer and Communications Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
E-mail: zoran.despotovic@epfl.ch

Gianluca Moro
Dept. of Electronics, Computer Science and Systems,
University of Bologna, Italy
E-mail: gmoro@deis.unibo.it

Sonia Bergamaschi
Dept. of Science Engineering,
University of Modena and Reggio-Emilia, Italy
E-mail: bergamaschi.sonia@unimo.it

Steering Committee

Karl Aberer EPFL, Lausanne, Switzerland
Sonia Bergamaschi Dept. of Science Engineering, University of Modena

and Reggio-Emilia, Italy
Manolis Koubarakis Dept. of Electronic and Computer Engineering,

Technical University of Crete, Greece
Paul Marrow Intelligent Systems Laboratory, BTexact

Technologies, UK
Gianluca Moro Dept. of Electronics, Computer Science and Systems,

University of Bologna, Cesena, Italy
Aris M. Ouksel Dept. of Information and Decision Sciences,

University of Illinois at Chicago, USA
Claudio Sartori IEIIT-BO-CNR, University of Bologna, Italy
Munindar P. Singh Dept. of Computer Science, North Carolina State

University, USA

X Organization

Program Committee

Karl Aberer EPFL, Lausanne, Switzerland
Alessandro Agostini ITC-IRST, Trento, Italy
Djamal Benslimane Universite Claude Bernard, France
Sonia Bergamaschi University of Modena and Reggio-Emilia, Italy
M. Brian Blake Georgetown University, USA
Angela Bonifati CNR, Italy
Rajkumar Buyya University of Melbourne, Australia
Paolo Ciancarini University of Bologna, Italy
Costas Courcoubetis Athens University of Economics and Business,

Greece
Yogesh Deshpande University of Western Sydney, Australia
Asuman Dogac Middle East Technical University, Turkey
Boi V. Faltings EPFL, Lausanne, Switzerland
Maria Gini University of Minnesota, USA
Dina Q. Goldin University of Connecticut, USA
Chihab Hanachi University of Toulouse, France
Mark Klein Massachusetts Institute of Technology, USA
Matthias Klusch DFKI, Saarbrücken, Germany
Tan Kian Lee National University of Singapore, Singapore
Zakaria Maamar Zayed University, UAE
Wolfgang Mayer University of South Australia, Australia
Dejan Milojicic Hewlett Packard Labs, USA
Alberto Montresor University of Bologna, Italy
Jean-Henry Morin University of Geneva, Switzerland
Andrea Omicini University of Bologna, Italy
Maria Orlowska University of Queensland, Australia
Aris. M. Ouksel University of Illinois at Chicago, USA
Mike Papazoglou Tilburg University, Netherlands
Mara S. Pérez-Hernández Universidad Politécnica de Madrid, Spain
Paolo Petta Austrian Research Institute for AI, Austria
Jean Marc Pierson INSA de Lyon, France
Jeremy Pitt Imperial College, UK
Dimitris Plexousakis Institute of Computer Science, FORTH, Greece
Martin Purvis University of Otago, New Zealand
Omer F. Rana Cardiff University, UK
Douglas S. Reeves North Carolina State University, USA
Thomas Risse Fraunhofer IPSI, Darmstadt, Germany
Pierangela Samarati University of Milan, Italy
Christophe Silbertin-Blanc University of Toulouse, France
Maarten van Steen Vrije Universiteit, Netherlands
Katia Sycara Robotics Institute, Carnegie Mellon University,

USA

Organization XI

Peter Triantafillou Technical University of Crete, Greece
Anand Tripathi University of Minnesota, USA
Vijay K. Vaishnavi Georgia State University, USA
Francisco Valverde-Albacete Universidad Carlos III de Madrid, Spain
Maurizio Vincini University of Modena and Reggio-Emilia, Italy
Fang Wang BTexact Technologies, UK
Gerhard Weiss Technische Universitaet, Germany
Bin Yu North Carolina State University, USA
Franco Zambonelli University of Modena and Reggio-Emilia, Italy

Preceding Editions of AP2PC

Here are the references to the preceding editions of AP2PC, including the vol-
umes of revised and invited papers:

– AP2PC 2002 was held in Bologna, Italy, July 15, 2002. The website can be
found at http://p2p.ingce.unibo.it/2002/ The proceedings were published
by Springer as LNCS volume no. 2530 and are available online here:
http://www.springerlink.com/content/978-3-540-40538-2/

– AP2PC 2003 was held in Melbourne, Australia, July 14, 2003. The website
can be found at http://p2p.ingce.unibo.it/2003/ The proceedings were pub-
lished by Springer as LNCS volume no. 2872 and are available online here:
http://www.springerlink.com/content/978-3-540-24053-2/

– AP2PC 2004 was held in New York City, USA, July 19, 2004. The website
can be found at http://p2p.ingce.unibo.it/2004/ The proceedings were pub-
lished by Springer as LNCS volume no. 3601 and are available online here:
http://www.springerlink.com/content/978-3-540-29755-0/

– AP2PC 2005 was held in Utrecht, Netherlands, May 9, 2005. The website
can be found at http://p2p.ingce.unibo.it/2004/ The proceedings were pub-
lished by Springer as LNAI volume no. 4118 and are available online here:
http://www.springerlink.com/content/978-3-540-49025-8/

Table of Contents

Invited Paper

Information Flow Analysis in Autonomous Agent and Peer-to-Peer
Systems for Self-organizing Electronic Health Records 1

Ben Tse, Raman Paranjape, and Samuel R.H. Joseph

P2P Infrastructure

Hybrid DHT Design for Mobile Environments . 19
Stefan Zoels, Simon Schubert, Wolfgang Kellerer, and
Zoran Despotovic

DANTE: A Self-adapting Peer-to-Peer System . 31
Luis Rodero Merino, Luis López, Antonio Fernández, and
Vicent Cholvi

The Exclusion of Malicious Routing Peers in Structured P2P
Systems . 43

Bong-Soo Roh, O-Hoon Kwon, Sung Je Hong, and Jong Kim

Agents in P2P

Cooperative CBR System for Peer Agent Committee Formation 51
Hager Karoui, Rushed Kanawati, and Laure Petrucci

Mobile Agent-Based Approach for Resource Discovery in Peer-to-Peer
Networks . 63

Jaafar Gaber and Mohamed Bakhouya

P2P Search

Chora: Expert-Based P2P Web Search . 74
Halldor Isak Gylfason, Omar Khan, and Grant Schoenebeck

K-link : A Peer-to-Peer Solution for Organizational Knowledge
Management . 86

Giuseppe Pirro’, Domenico Talia, and Massimo Ruffolo

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 98
Elth Ogston

XIV Table of Contents

Applications

Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P
File Reputation Systems . 111

So Young Lee, O-Hoon Kwon, Jong Kim, and Sung Je Hong

A Comparative Study of Reasoning Techniques for Service Selection 123
Murat Şensoy and Pınar Yolum

PROSA: P2P Resource Organisation by Social Acquaintances 135
Vincenza Carchiolo, Michele Malgeri, Giuseppe Mangioni, and
Vincenzo Nicosia

Reliable P2P File Sharing Service . 143
Jung-Hwa Shin, Weon Shin, and Kyung-Hyune Rhee

Studying Viable Free Markets in Peer-to-Peer File Exchange
Applications without Altruistic Agents . 151

David Cabanillas and Steven Willmott

Distributed Multi-layered Network Management for NEC Using
Multi-Agent Systems . 159

Richard Vaughan, James Wise, Paul Huey, Michael Alcock,
Jonathan Vaughan, Steven Shingler, and Graham Atkins

Facilitating Collaboration in a Distributed Software Development
Environment Using P2P Architecture . 167

Maryam Purvis, Martin Purvis, and Bastin Tony Roy Savarimuthu

A Peer to Peer Grid Computing System Based on Mobile Agents 175
Joon-Min Gil and Sung-Jin Choi

Author Index . 187

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 1–18, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Information Flow Analysis in
Autonomous Agent and Peer-to-Peer Systems for

Self-organizing Electronic Health Records

Ben Tse1, Raman Paranjape1, and Samuel R.H. Joseph2

1 Electronic Systems Engineering,
University of Regina and TRLabs Regina,

3737 Wascana Pkwy
Regina, SK S4V 0R4, Canada

Raman.paranjape@uregina.ca
2 Laboratory for Interactive Learning Technologies,
Department of Information and Computer Sciences,

University of Hawaii,
1680 East West Road, POST 309

Honolulu, HI 96822 USA
srjoseph@hawaii.edu

Abstract. There are various software applications that are highly suited for
development using agent technology. Typically these applications take
advantage of some of the intrinsic qualities of agents that include: autonomy,
reactivity/proactivity, group-action, and/or mobility. On the other hand, there
are many parallels between Agent Systems and Peer-to-Peer Systems allowing
the latter to be employed in similar problem domains. This paper presents an
agent application in the health care record management domain and then
examines how such a system might also be implemented as a Peer-to-Peer
System. The management of health care records is in itself a novel use of
Mobile Agent technology and in order to understand the Agent System
Dynamics, the system is simulated using a limited number of agents and agent
platforms; as well as being modeled mathematically. The Peer-to-Peer system is
also simulated and modeled mathematically demonstrating a number of
behaviors that are similar across both systems.

Keywords: autonomous agents, peer-to-peer, mobility, electronic health records.

1 Introduction

1.1 Electronic Health Records

Health record information access/retrieval is one of the major problems in modern
health care systems (Moreno, 2003; Nealon & Moreno, 2003). Ideally relevant
information from a patient’s complete health record would be available to every
practitioner at all times; however prescription information, test results and doctor’s

2 B. Tse, R. Paranjape, and S.R.H. Joseph

diagnoses are generated and stored in multiple locations such as hospitals, clinics,
pharmacies and so on. In reality it is difficult to assemble the relevant information in
the correct location at the right time in order to provide the best possible service to the
patient. The problem is made more complex by the importance of maintaining patient
privacy.

An Electronic Health Record (EHR) is an electronic version of a patient’s health
information and contains prescriptions, lab results, evaluations by doctors, etc. EHRs
can be made easily accessible through an electronic health information network. The
advantages of EHRs include: increasing effectiveness and efficiency of clinical staff
and health practitioner by simplification of access to health records, rapid movement
of health information for better care of patients, simple duplication and
multiple/simultaneous access to patient health information, and potential increases in
the profitability of the medical practices and/or facilities.

Although EHRs appear to hold great promise, there are many challenges that need
to be addressed before they can be fully integrated in a health care system. These
challenges include: security and confidentiality, lack of standards (data exchange,
data management and data integration) or slow adaptation to existing standards, lack
of government and/or private funding, especially in developing countries, complexity
of medical data, rejection by health care professionals, and network bandwidth
consumption (Dick & Steen, 1991; Johns, 1997).

1.2 Mobile Agent Technology

Mobile agent technology has received a fair degree of attention in academic research
in recent years (Kotz et al., 2002). Mobile agents are defined as a software objects
that can migrate to different computers over an IP network to perform user-assigned
and self-initiated tasks. Mobile Agents are autonomous software programs that may
start running on a host computer, stop what they are doing, move to another host
computer, and start up from where they left off.

Mobile Agents are best understood through comparison with other related
technologies such as mobile code, distributed objects, and viruses/worms. Mobile
code technologies such as process migration, remote evaluation, and mobile objects
are very similar to Mobile Agents but differ in that Mobile Agents autonomously
initiate their own mobility during their execution process. Mobile Agents place an
emphasis on location awareness that differentiates them from distributed object
technologies like RMI, CORBA, and DCOM (Raj, 1998) which abstract over
location. Viruses and worms are related technologies that have negative connotations;
however they are essentially mobile agents that use deception or software bugs to
facilitate their movement and execution instead of relying upon an agent execution
environment.

The mobile agent programs run with the aid of another program called an agent
execution environment that must be installed and running on a host computer before
the mobile agent program can run. An agent execution environment provides the
mobile agents with services for mobility, messaging, resource access, and security.
The agent execution environment also provides administration services for running
and monitoring the behavior of mobile agents. TEEMA (TRLabs Execution
Environment for Mobile Agents) is an agent execution environment that was

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 3

developed by faculty, staff and graduate students at TRLabs Regina and Electronic
Systems Engineering at the University of Regina. TEEMA provides basic services
such as logging, agent-to-agent messaging, agent migration, and agent naming.
Customized services can be added to TEEMA without any difficulty because of its
flexible architecture. More information related to TEEMA can be found in (Gibbs,
2001; Martens, 2001).

A mobile agent system may be viewed as a specific type of multi-agent system that
would be classed as a Heterogeneous Communicating Multi-agent System according
to Stone’s taxonomy (Stone & Veloso, 2000). Stone’s survey lists many multi-agent
systems and classifies them into: Homogeneous Non-Communicating Multi-agent
Systems, Heterogeneous Non-Communicating Multi-agent Systems, and Hetero-
geneous Communicating Multi-agent Systems. SWARM (Minar et al., 1996; Luna &
Stefansson, 2000) and REPAST (Collier, 2003) are examples of multi-agent systems
that are particularly popular for economic simulations. Multi-agent systems can be
composed of many intelligent mobile agents. These multi-agent systems have been
used for various applications including for example: electronic market places (Smith
et al., 2001) course scheduling applications (Yang et al., 2004), and network resource
management (Wei et al., 2002).

2 Agent System Dynamics and Analysis

In order to ensure that useful and effective mobile agent systems are constructed it is
important to study, examine and test their system level behavior. This allows for
greater understanding of the system dynamics so that once the system is implemented
the dangers of unexpected system behavior are reduced. These unexpected system
behaviors result from unforeseen group actions of agent groups, and agent-group
behavior that was not directly coded by the agent designers.

The proposed approach is to simulate the agent system with a simplified
architecture. This simplified architecture was implemented and the actual behavior of
the system examined using executions of the simulation. The simplified architecture
can also be modeled mathematically to define asymptotic system behavior.

Several mathematical approaches have been introduced to model and analyze
system behavior in multi-agent systems (Lerman & Galstyan, 2001; Tecchia et al.,
2001; Xu et al., 2002). Among these approaches Lerman & Galstyan (2001) present a
general mathematical approach to analyze the global dynamic behavior of multi-agent
swarm systems. Swarm systems (Bonabeau et al., 1999) are typically composed of
many simple, task-oriented, objects that travel through potentially hostile
environments to search for their task-related items. With no central controller
directing how individual objects behave, interesting and intelligent collective
behaviors emerge from the local interactions among individual agents and the
interaction between individual agents and their surrounding environment.

Lerman & Shehory (2000) applied their mathematical modeling approach to a
swarm system in a large scale electronic market, allowing observation of coalition
formation behaviors. This behavior, however, was not explicitly programmed into
each individual agent but was a spontaneously produced group-action. Similarly,
much work has been done in information access/retrieval based on mobile agents; for

4 B. Tse, R. Paranjape, and S.R.H. Joseph

example Smith et al. (2001) indicated that the full potential of each individual agent is
not obtained during unwanted agent-group behaviors. Therefore, the behavior of
agents in a multi-agent system must be carefully examined before implementation of
an actual system, in order to minimize the chances of system failure and achieve
superior system and individual agent performance.

2.1 The Agent-Based Electronic Health Record System

Many current health care systems are distributed among different geographical
locations and patients’ record are scattered throughout the Health System and could
physically be anywhere such as for example in a clinic, a doctor’s office, medical
laboratory and/or a pharmacy. We propose an Agent-Based Electronic Health Record
System using the TEEMA platform. A simplified simulation model of the system is
shown in Figure 1 and follows our earlier work (Tse & Paranjape, 2006).

By using mobile agent technology, we add mobility to these records, which allows
the record to move independently anywhere within the health care information
system. This multi-agent system can be colloquially described as putting a mobile

Fig. 1. An overview of the simplified Agent-based Electronic Health Record System architect-
ture; each TEEMA platform represents a site in the system. Patient Agents visit each of these
sites in the process of executing the simulation.

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 5

agent wrapper around an electronic health record fragment and instructing the agent
to move the patient health record fragment to other medical facilities in order to unite
and complete the patient electronic health record.

The two critically important aspects of the system are: (1) A complete health
record set is defined as every piece of information in a patient’s health record
regardless of where it was generated united into one consistent and complete set of
information. (2) Each agent in the system is self-regulated. This means that an
individual mobile agent will accomplish its assigned task without any external
supervision or guidance and no concept of what the group goal is. For each agent, its
task is to retrieve and/or update the health record for the patient. Each individual
agent has no interest in finding out what other agents within the system are doing.

2.2 System Components

Each TEEMA platform represents a certain physical location such as: a clinic, a
doctor’s office, a pharmacy or a laboratory. In each platform, there are a number of
stationary and mobile agents. The location where all patient information is collected
and collated is defined as the Health Record Central (HRC). All patient information is
eventually sent to the HRC. The system contains five different types of stationary
agents and one mobile agent:

Stationary Agents
Clinic Agent (CA): Responsible for creating an agent for a patient when the

patient arrives at the clinic. The clinic agent also
verifies patient identity.

Doctor Agent (DA): Responsible for managing doctor’s comment (health
record) for patients.

Pharmacy Agent (PhA): Responsible for validating the patient’s identity and
communicating with the patient agent when the patient
pickups his/her prescription.

Lab Agent (LA): Responsible for validating patient identity and
communicating with the patient agent when the patient
comes into the lab for medical tests.

Health Record Central
Agent (HRCA):

Responsible for validating patient agents before they
can access/modify/update the health record database.

Mobile Agents

Patient Agent (PtA): Is the patient’s representative and it (or its clone) can
migrate to different platforms to do work on the patient’s
behalf. It is responsible for updating patient health
records, transferring new records to the HRC. If there is a
prescription and/or lab test needed, the patient agent will
clone itself and migrates to the pharmacy and/or
laboratory and ensures that the patient fills the
prescription or does the test and that the information is
recorded and collected in the system.

6 B. Tse, R. Paranjape, and S.R.H. Joseph

Activity At Each Site
Clinic: All patients enter the simulation at the clinic. Patients

Agents (PtA) are created when the patient enters the
clinic. The PtA then checks if the patient health record
needs to be updated. If so, it will clone itself and go to the
HRC to obtain the necessary data. Then the PtA enters
one of the two Doctor’s offices. After the visit to one
doctor’s office the patient health record is updated and
this new information is deposited in the HRC. The PtA
will again clone itself and transmit the new information
to the HRC. In addition, the Doctor may order laboratory
tests, and/or medicines from the pharmacy. In this case,
the PtA will also clone itself and move to the laboratory
and/or pharmacy and wait for the patient to arrive.

Doctor’s Office: When the PtA arrives at the Doctor’s office it interacts
with a stationary doctor’s office interface agent. This
stationary agent relays the Doctor’s instruction for the
patient into the PtA. The Doctor’s assessment of the
patient’s condition, which becomes part of the patient’s
health record also, is loaded into the PtA. The PtA then
takes responsibility of the update of the health record and
satisfying any Pharmacy or Laboratory requirements.

Laboratory: A clone of the PtA is sent to the Laboratory on the
instructions of the Doctor. The PtA clone waits for the
patient to physically arrive in the Laboratory and then for
Lab results to be generated. These results are assumed in
this simulation to be available immediately after the
patient visit but may in fact require some time to
complete. The PtA clone interacts with a stationary
Laboratory Agent which provides an interface to the
Laboratory technician who is responsible for the
operation of the Laboratory.

Pharmacy: A clone of the PtA is sent to the Pharmacy on the
instructions of the Doctor. The PtA clone waits for the
patient to physically arrive in the Pharmacy and then for
Pharmacy results to be generated. These results are
assumed in this simulation to be available immediately
after the patient visit but may in fact require some time to
complete. The PtA clone interacts with a stationary
Pharmacy Agent which provides an interface with the
Pharmacist who is responsible for the operation of the
Pharmacy.

Health Record Central
(HRC):

Is the data center for the Agent-based health record
system and is the place where all patient health
information is stored. The HRC acts as the repository of
all patient information that may be generated in the health
care system even when the patient has exited the health

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 7

care system. When the patient re-enters the health care
system by coming to the clinic and a doctor’s office, the
HRC is used to update the patient information. The
operation of the HRC is mediated by a stationary agent
who task is to maintain the health record information
delivered by PtA clones.

3 Experimental Validation

The architecture was implemented and experiments run to assess its behavior. These
experimental results can be compared with numerical results from a general
mathematical model of the system which will be discussed in section 3.4.

3.1 Simulation Structure and Conditions

Computers in the simulation were interconnected via 100Mbps Ethernet. Two
computers were used that each executed a number of TEEMA platforms (the agent
execution environment) Each TEEMA platform represents one specific physical
medical site; in our experiment these included: 1 Clinic, 2 Doctors in the Clinic, 1
Pharmacy, 1 Laboratory and 1 HRC; leading to a total of 6 TEEMA platforms. The
TEEMA platforms for the Clinic and the two Doctor’s offices were executed on a
single computer, and the other TEEMA platforms were executed on the other
computer to represent the Pharmacy, Laboratory and the HRC.

Basic conditions and assumptions used in the experiment are listed below:

1. Doctor evaluations, prescription contents and lab test results are predefined
to be the only type of data in the electronic health record. The combination of
these components was considered the full health record of a patient.

2. Each TEEMA platform represents a physical medical site, so it will have its
own unique IP address and port number. A configuration file is used to
gather all TEEMA platforms associated with doctors, clinic, pharmacy and
lab IP addresses and port numbers used in the experiment. This file is used as
a reference for all the patient agents who need to migrate to different medical
sites or TEEMA platforms.

3. Patients’ health records are structured based on a file-system structure. So, in
the HRC, each file contains an individual patient’s health record.

4. A Number scheme was used for the patient name and each file was named
using this scheme.

5. There are several random behaviors simulated by different kinds of random
sources during the experiments:

• Patient preference behavior – this behavior describes a patient’s
wish to choose a specific doctor. For simplicity a uniform
distributed random number is used to represent this behavior.

• Patient necessitated behavior - this behavior describes the need for a
specific medical action. This includes the need for prescriptions and
lab work. A Bernoulli random number was used to describe this
type of behavior. Since the need for a prescription/lab work is

8 B. Tse, R. Paranjape, and S.R.H. Joseph

binary the chance that a patient will need this type of medical
service when he/she visited the clinic is 50/50.

• Patient arrival behavior – this behavior describes rate of patient
arrival at the clinic. For simplification, a constant mean rate of
arrival was used and set to one patient arrival at the clinic every
minute.

• Professional service behavior – this behavior describes the service
time of any medical services provided to the patients. This includes
physicians, pharmacists, and lab technician patient processing time.
The doctors’ service behavior was a uniform distributed random
number between 1 and 5 (average service time of 3 minutes) while
the lab and pharmacists’ service behavior was a uniform distributed
random number between 1 and 11 (average service time of 6
minutes).

3.2 Simulation Results

Figure 2 shows a set of graphs of the Agent population versus time for each of the sites
with in the simulation. The horizontal axis on each graph shows time while the vertical
axis shows number of agents. Patients and therefore Patient Agents were spawned into
the system at the rate of 1 patient per minute. The experiment had duration of 30
minutes, and so involved 30 patients and their associated PtAs and clones.

We observe from Figure 2 that the number of Agents in the clinic goes up and
down from zero to four agents but in general remains stable within this range. The
PtA population does not show system level increases or decreases. Similarly the HRC
does not show a marked development in the agent population with either zero or one
agent on site throughout the experiment. On the other hand, all the other sites in the
system show steady linear increases in agents congregating at the sites. Each of the
Doctor’s offices as well as the Pharmacy and Laboratory appear to have unsustainably
long processing times and the population of patients and patient agents builds up at
these sites. After studying these system behaviors the observer may be in a position
to suggest mediating action such as decreasing pharmacy and laboratory wait times by
adding staff.

3.3 Mathematical Modeling

A macroscopic model that treats agent population at each medical site as the
fundamental unit (hence directly describing the characteristic of the system) can also
be constructed. The equations used to model the system are presented below. These
equations are presented in general form in Tse & Paranjape (2006) but are presented
here modified for the specific context of the current experiment. The dynamics of the
self-organizing processes can be examined using this model. The model contains a set
of coupled rate equations that describe how the agent population at each platform
evolves over time. The mathematical model contains one clinics, with two doctors in
the clinic, one pharmacy, one testing laboratories and one Health Record Central.

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 9

Fig. 2. Evolution of Agent Populations at each of the Sites in the Simulation. These are typical
traces showing movements of patient agents in the simulation between six TEEMA platforms for
a 30 minutes simulation run. The x-axis is time and the y-axis is number of agents on the site.

The dynamic variables in the model are:

• NC(t) – is the number of agents in the clinic.
• NCDm(t) – is the number of agents in doctor m’s office in the clinic.
• NP(t) – is the number of agents in pharmacy.
• NL(t) – is the number of agents in laboratory.
• NHRC(t) – is the number of agents in the Health Record Central.

The equations governing the behavior of the system are given below:

)()(

)()()(

AvgDCCLCAvgDCCPB

CCRACCDdt
tdN

tNtN

tNtNC

ταβταβ
αβαδλ

−−−
−−−+=

 (1)

10 B. Tse, R. Paranjape, and S.R.H. Joseph

11
)(/1)(1

CDDCCDdt

tdN tNCD τβα −= (2)

22
)(/1)(2

CDDCCDdt

tdN tNCD τβα −= (3)

)()/1)(()(
AvgDPBAvgDCCPdt

tdN ttNP τθτβτα −−−= (4)

)()/1)(()(
AvgDLCAvgDCCLdt

tdN ttNL τθτβτα −−−= (5)

HRCCDCD

LLAvgDACCRdt
tdN ttNHRC

τττ
τττθβα

/1/1/1

/1)()(

21

)(

−+

+−−+=
 (6)

And the definitions of the parameters used in the model are:

• λ – the patient arrival rate at the clinic, which is the rate of agent
production.

• δ - the rate of agent cloning that occurs at the clinic platform.
• τCDm - the examination time of doctor ‘m’ on a patient.
• τAvgD – the average of all τCDn.
• τP- the service time of an agent in the pharmacy (prescription fill time +

prescription pickup time).
• τL - the service time of an agent in the lab (time for a patient to come to

the lab + test result production time).
• τHRC - the service time for an agent in a HRC.
• βA, βB, βC, - the probability of a patient who need an update, or a

prescription, or a lab work, respectively.
• βDm - the probability of a doctor being chosen by a patient. It is set to 1/(#

of doctors in the Clinic), since each doctor is to be chosen equally.
• α - the transition rates of agents between different platforms, for example:

αCP is the rate at which PtAs leave the Clinic platform to go to the
pharmacy platform.

• θ(t-τ) - a unit step function to ensure certain variables are zero during t <
τ.

For simplicity, we assume the following when solving the equations:

• all α to be uniformly distributed in some space, which set to 1.
• all β to be a constant value 0.5, except for βPP1 and βPL1 which set to 1.
• τCD1 and τCD2 are set to be a constant value of 3, τP and τL are set to a

constant value of 6, while τHRC is set to 1. These values are the expected
value of the uniform distributed random number in our parameters used in
the simulation.

• λ = 1 and δ = 1/3.

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 11

3.4 Modeling Results

A set of graphs indicating the solution of the set of equations above is shown in
Figure 3. The graphs show the population of PtAs at each of the sites in the Agent
model presented as a function of time over a 30 minute interval. The first and most
important observation is that the graphs in Figure 3 correspond closely to the graphs
in Figure 2 for the agent population in the simulation.

In the HRC graph, we see that there is a small oscillatory behavior which occurs in
the value of NC(t) at the beginning of the experiment. The reason may be that there
are many PtAs being created and they are cloning themselves at the same time,
causing an increase in NC1(t). As the PtAs leave the Clinic platform for either of the
Doctor’s platform the number of Agents in the clinic platform, NC1(t), decreases. Thus
there are forces increasing and decreasing the agent population in the Clinic platform.
As time goes by, the number of agents in each platform becomes stable in the form of
a straight line. This suggests that the system adjusts itself to the changes of PtA
population in each platform.

Fig. 8

Fig. 3. Asymptotic Behavior of Agent Populations at each of the Sites in the Simulation. These
are typical traces showing movements of patient agents in the mathematical model between six
TEEMA platforms for a 30 minutes execution. The x-axis is time and y-axis is number of
agents on the site.

12 B. Tse, R. Paranjape, and S.R.H. Joseph

We can calculate the number of agents in each Doctor platform by noting that 30
PtAs were created in the 30-minute experiment. Since the agents will divide
themselves up between the two Doctors platforms each doctor will see 15 patients.
Each doctor’s examination time is 3 minutes on average, thus at the end of 30 minutes
each will have processed only 10 patients leaving 5 patients and their corresponding
PtA on each of the Doctor’s platform. In fact, this is very close to what we see in
Figure 3. Similar calculations for pharmacy and lab platform indicate there should be
6 PtAs in Pharmacy and 6 PtAs in the Laboratory respectively. Again there is good
correspondence to what we see in Figure 3.

4 Peer to Peer

4.1 Development of an Equivalent Peer-to-Peer System

Many peer-to-peer techniques are not especially relevant to systems on the scale of
the one presented above, since these techniques are designed to deal with situations
where particular machines or documents needs to be tracked over very large
distributed systems. A scaled up version of the health record system described in this
paper could in principle rely on multiple health record centers. To the extent that
there were thousands or even tens of thousands of health record centers peer-to-peer
techniques such as distributed hash tables (Balakrishnan et al., 2003) could be used to
ensure retrieval of a consistent individual health record for each patient. However in
a system of the size considered here these techniques are redundant since any request
for information can be immediately satisfied by a direct lookup against a list of
available locations and dispatch of an agent.

However this does not prevent us from simulating a system that works on peer-to-
peer principles, i.e. one that involves the decentralized transmission of messages as
opposed to agents. In fact, arguably this kind of system is not a novel peer-to-peer
system at all, but simply a decentralized messaging system just like most common
network systems today. While much of the web for example relies on a client-server
model layered over decentralized messaging systems, many commonly used
applications such as email still use a decentralized non-client-server system and have
done so for many years; long before the term peer-to-peer was associated with
decentralized overlay networks as it is today.

4.2 Simulation Method

A “peer-to-peer” simulation was developed in the Ruby programming language
following the specifications of the health record system described earlier in this paper.
To be specific the health system described above is a largely centralized system, with
most agents being required to pass through a single centralized “clinic” location, with
the exception of occasional traffic between the “lab” and “hrc” locations. The
possible message pathways are shown in the following diagram:

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 13

Fig. 4. Locations and information flow in the Health System application

Each location was considered to have a queue for incoming messages, and could be
in a “blocked” state if it was unable to process additional messages, e.g. when a
doctor was seeing a patient. Message transfer and process time was assumed to take a
second, when not associated with professional service behavior, which itself followed
a one to five minute Uniform distribution. A new patient arrived at the clinic every
minute. The clinic peer would check the locally stored copy of the patient’s health
record and request an update from the HRC peer as necessary. Assuming a patients
health record was up to date patients would be assigned to the doctor of their
preference, and a message containing the health record would then be sent to the
doctor peer which would start to process that patient and not process any additional
messages until the doctor had finished with that patient. Finished sessions with
patients would lead to the doctor peer sending notification and follow up requests to
the clinic peer, which would pass them on to the pharmacy and lab as appropriate,
with the pharmacy and lab peers blocking as they performed their own professional
service behavior. The lab and pharmacy peers would then notify the appropriate
peers via the clinic peer (in the case of message to the doctor peer) or directly to the
HRC peer as necessary. All probability distributions were set following the pattern
described earlier in the paper.

The simulation was run on a single computer, with all “locations” virtually present
in the same environment. The results of a single simulation run are shown below.
Naturally any simulation should be run a repeated number of times until the expected

14 B. Tse, R. Paranjape, and S.R.H. Joseph

Fig. 5. Queue lengths over time for the different locations in the peer to peer system. X axis is
time in minutes, while y axis is length of queue in messages.

error reaches a threshold level, however the mathematical analysis we shall describe
in the next section fully explains the behavior of the system and makes such repeated
simulations largely unnecessary. For the moment it is relevant to note that the peer
simulation shows remarkably similar behavior to the agent system in that we see
queues of increasing length at both doctors and at the lab and pharmacy.

Queueing theory (Allen, 1990) defines the traffic intensity (a) of a simple queueing
system as the mean arrival rate (λ) divided by the mean service rate (μ), and states that
the number of servers (c) must be greater than this ratio in order to avoid queues of
ever increasing length, as shown in equation 7.

ca <=
μ
λ

 (7)

If we make the plausible assumption that individual message transfer and processing
times are trivial in comparison to professional service behavior the fundamental behavior

Doctor A

0

2

4

6

8

1 11 21 31

Doctor B

0

2

4

6

8

1 11 21 31

Clinic

0

2

4

6

8

1 11 21 31

HRC

0

2

4

6

8

1 11 21 31

Pharmacy

0

2

4

6

8

1 11 21 31

Lab

0

2

4

6

8

1 11 21 31

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 15

of the system can be modeled in terms of individual doctors as a set of G/U/1 queuing
systems. A G/U/1 queueing system has an unspecified inter-arrival time distribution (G
or general), a Uniform service time distribution (U) and a single server (1). Patients in
our system arrive with a deterministic or constant gap between arrivals (i.e. 1 minute),
but they arrive wanting to see a particular doctor. Thus we can model the system as two
queues, one for Dr. A and another for Dr. B. Given a sequence of patients wanting to see
Dr. A we will eventually have a patient wanting to see Dr. B and so there is a gradually
decreasing chance of longer inter-arrival times for each doctor. This amounts to a
geometric distribution which counts as a general distribution in queueing theory.

Patients in the system are clearly processed in a Uniform amount of time (between
1 and 5 minutes), but it may not be so obvious how we can think in terms of a single
server (the 1 in G/U/1). We can describe the system in terms of a single server
because as we will show, the number of patients desiring to visit an individual doctor
forms a bottleneck that makes any subsequent waiting times (e.g. at the lab or
pharmacy) irrelevant in terms of the overall system behavior. Assuming for the
moment that we accept the assertion that doctors create the system bottleneck it
follows from our reasoning above that the two doctors should be considered as
independent queues since patients have decided in advance which doctor they would
like to see. As a result one doctor cannot process the others’ patients, giving us
effectively two independent G/U/1 type queues.

Let us consider the traffic intensity (a) for one doctor peer. We know that the
service time distribution is normal and the arrival time distribution is geometric. The
expected values of the service time (E[s]) and inter-arrival time (E[τ]) are thus
[min+max]/2 and [1-p/p]+1 respectively, where min is the minimum service time,
max is the maximum service time and p is the probability of choosing one doctor over
the other. The mean service time of each patient (μ) is the inverse of the expected
service time (1/ E[s]) and the arrival rate of patients to each doctor (λ) is the inverse
of the expected inter-arrival time (1/ E[τ]). Given that min=1, max=5 and p = 0.5 we
know the mean service time (μ) is 1/3 and the mean arrival rate (λ) is 1/2.
Unfortunately for our patients this means that the traffic intensity as defined in
equation 7 is 3/2 implying that a single doctor (and their patients) will always
experience increasing queue lengths. Thus given that patients arrive at this rate, the
only way for the system to function effectively is to have more than one doctor
available for each patient. Assuming that patients had no choice as to which doctor
they saw the system would still be unable to function, as although there are two
doctors, the same analysis above applied to an inter-arrival time of 1 minute indicates
that at least three doctors are required to ensure non-increasing queue lengths.

Thus the fundamental behavior of our computer implementation, simulation and
previous mathematical analysis is explained by simple queueing theory. Our first reaction
will likely be that the distributions specified for the simulations are not realistic, and that
both patient arrival and service times are much more likely to be described by exponential
distributions of some sort, and that it would be an uncommon health system that could
always guarantee patients access to the doctor of their choice. Replacing the assumptions
of the existing simulations with those found in real world settings would seems a logical
next step, at which point it is likely that we would find the doctor bottleneck was removed
and require a more comprehensive queueing model to explain system behaviour.

16 B. Tse, R. Paranjape, and S.R.H. Joseph

Fortunately Baskett et al. (1975) developed the BCMP Queuing network model that
allows systems such as these to be modeled as a group of interconnected queues. This
approach would become increasingly valuable for pinpointing particular system
bottlenecks as simplifying assumptions, such as message processing time being trivial in
comparison to professional service behavior, start to break down.

The particular advantage of a queuing analysis in general is that we can use it to
predict precisely how many servers (doctors, labs, pharmacies, etc.) are required to
support an operationally effective system rather than rely exclusively on a trial and
error approach of making small changes and then repeating simulations or numerical
analyses to see if the changes have had the expected effect.

5 Conclusion

In this work we have focused on the development of an agent-based mechanism to
support the creation of a self-organizing electronic health record system. The method
focuses on the problem of creating complete and consistent records using the strength
of agent mobility. We have demonstrated that the agent system will behave as
expected by employing both simulation techniques and mathematical modeling.

The second important strength of this type of modeling is that system behaviors
such as the linear increase in patients at some of the sites in the health care system can
be recognized and addressed before actual system implementation. This approach
circumvents system problems by identifying them prior to implementation and allows
for effective evaluation of mediating approaches. The approach demonstrates the
advantages of test simulation and modeling in agent system design and development.

However our peer-to-peer model demonstrates that the ability to support a health
record system with complete and consistent records does not explicitly require the use
of mobile agents. Mobile agents are a powerful technology that has particular
advantages over simple decentralized message passing systems in that they can
transfer code and state along with simple message data. As described by Joseph &
Kawamura (2001) there are only a limited set of circumstances in which the particular
power of mobile agents can be used effectively, and we have not as yet demonstrated
that the nature of the health care record maintenance challenge is one of them. We
cannot rule out that as more complex health record behavior is manifested in such as
system, mobile agent technology will be required. However in the absence of specific
evidence and given that our somewhat simpler peer-to-peer system achieves exactly
the same results as our mobile agent system, one has to ask the question of whether
mobile agents are perhaps too powerful a technology to be employed for this
particular application. Nonetheless we hope that our side by side comparison of an
agent system implementation, a peer-to-peer simulation, a mathematical model of
agents and queueing theory analysis will prove instructive for system designers in the
medical informatics field.

Acknowledgments. The authors thank TRLabs and NSERC for their generous
support of this project.

 Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems 17

References

Allen, A.O.: Probability, Statistics and Queueing Theory with Computer Science Applications,
2nd edn. Academic Press, San Diego (1990)

Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking Up Data in P2P
Systems. Communications of the ACM 46(2), 43–48 (2003)

Baskett, F., Chandy, K., Muntz, R., Palacios, F.: Open, closed, and mixed networks of queues
with different classes of customers. Journal of the ACM 22(2), 248–260 (1975)

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems.
Oxford University Press, New York (1999)

Collier, N.: Repast: the recursive porous agent simulation toolkit, [WWW document] (2003),
http://repast.sourceforge.net

Dick, R.S., Steen, E.B.: The Computer Based Patient Record: An Essential Technology for
Health Care. National Academy Press, Washington D.C (1991),

 http://www.nap.edu/books/0309055326/html/index.html
Gibbs, C.: TEEMA Reference Guide Version 1.0. Regina, TRLabs, Saskatchewan, Canada

(2000)
Johns, M.L.: Information Management for Health Professionals, Delmar (1997)
Joseph, S., Kawamura, T.: Why Autonomy Makes the Agent. In: Liu, J., Zhong, N., Tang,

Y.Y., Wang, P. (eds.) Agent Engineering, pp. 7–22. World Scientific Publishing, Singapore
(2001)

Kotz, D., Gray, R., Rus, D.: Future directions for mobile-agent research. Technical Report
TR2002-415, Dept. Computer Science, Dartmouth College (January 2002)

Lerman, K., Galstyan, A.: A methodology for mathematical analysis of multi-agent systems
(University of California Information Sciences Technical Report ISI-TR-529). California,
USA: University of California Information Sciences Institute (2001),

 http://www.isi.edu/~lerman/projects/task/
Lerman, K., Shehory, O.: Coalition formation for large-scale electronic markets [Electronic

Version]. In: Proceedings of the Fourth International Conference on Multiagent Systems,
Boston, MA, pp. 167–175 (2000)

Luna, F., Stefansson, B.: Economic simulations in Swarm: agent-based modelling and object
programming. Kluwer Academic Publishers, Dordrecht (2000)

Martens, R.: TEEMA TRLabs Execution Environment for Mobile Agents. TRLabs, Regina,
Saskatchewan, Canada (2001)

Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system, a toolkit for
building multi-agent simulations (1996),

 http://www.santafe.edu/projects/swarm/overview/overview.html
Moreno, A.: Medical Applications of Multi-Agent Systems. In: Paper presented at the 2003

Intelligent and Adaptive Systems in Medicine Workshop,
 http://cyber.felk.cvut.cz/EUNITE03-BIO/pdf/Moreno.pdf
Nealon, J., Moreno, A.: Agent-based applications in health care. In: Paper presented at EU-

LAT Workshop 2003 (2003),
 http://www.etse.urv.es/recerca/banzai/toni/MAS/papers.html
Raj, G.S.: A detailed comparison of CORBA, DCOM and Java/RMI, Tech. rep., Web

Cornucopia, [WWW document] (1998),
 http://my.execpc.com/~gopalan/misc/compare.html
Smith, K., Paranjape, R., Benedicenti, L.: Agent behavior and agent models in unregulated

markets [Electronic Version]. Association for Computing Machinery SIGAPP Applied
Computing Review 9(3), 2–12 (2001)

18 B. Tse, R. Paranjape, and S.R.H. Joseph

Stone, P., Veloso, M.M.: Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots 8(3), 345–383 (2000)

Tecchia, F., Loscos, C., Conroy, R., Chrysanthou, Y.: Agent Behaviour Simulator (ABS): A
Platform for Urban Behaviour Development. In: The First International Game Technology
Conference and Idea Expo (GTEC 2001) in co-operation with ACM SIGGRAPH and
EUROGRAPHICS, Hong Kong, pp. 17–21 (2001)

Tse, B., Paranjape, R.: Macroscopic Modeling of Information Flow in Agent-Based Electronic
Health Record System, ch. 17. In: Lin, H. (ed.) Architectural Design of Multi-Agent
Systems: Technologies and Techniques, Idea Group Publishing (2006)

Wei, H., Paranjape, R., Benedicenti, L.: Mobile agent network management system
performance study in frame relay network. In: Proceedings of the 2002 Institute of Electrical
and Electronics Engineers Canadian Conference on Electrical and Computer Engineering,
Winnipeg, Manitoba, Canada, pp. 1499–1504 (2002)

Xu, D., Volz, R., Loerger, T., Yen, J.: Modeling and verifying multi-agent behaviors using
predicate/transition nets. In: Association for Computing Machinery International Conference
Proceeding Series, vol. 27, pp. 193–200 (2002)

Yang, Y., Paranjape, R., Benedicenti, L.: An examination of mobile agents system evolution in
the course scheduling problem. In: Proceedings of the 2004 Institute of Electrical and
Electronics Engineers Canadian Conference on Electrical and Computer Engineering, vol. 2,
pp. 657–660 (2004)

Hybrid DHT Design for Mobile Environments

Stefan Zoels1, Simon Schubert1, Wolfgang Kellerer2, and Zoran Despotovic2

1 Institute of Communication Networks, Munich University of Technology, Germany
stefan.zoels@tum.de, corecode@fs.ei.tum.de

2 Future Networking Lab, DoCoMo Communications Laboratories Europe, Germany
{kellerer, despotovic}@docomolab-euro.com

Abstract. In this paper we present a hybrid design concept for Distrib-
uted Hash Tables (DHTs), in order to increase the performance of DHTs
in scenarios with mobile participants. By defining two classes of nodes
(static and temporary) and assigning critical overlay networking tasks
to reliable static nodes, our concept allows the disburdening of resource-
constrained temporary nodes such as PDAs or mobile phones. Further
we present an implementation of our system design, based on the Chord
protocol, in the Network Simulator 2 (NS-2) and in the overlay simulator
L7Sim and show simulation results that prove the significant advantages
of our extension in comparison to conventional DHTs.

1 Introduction

Distributed Hash Tables (DHTs) are currently a major subject of research in the
area of distributed computing and Peer-to-Peer (P2P) networks in particular.
Their two key properties – hash table like lookup interface and extreme scala-
bility – turn out to be sufficient for building large scale distributed applications.
Additionally, in contrast to unstructured P2P networks, they avoid flooding of
query messages, thus reducing the average number of search hops to O(log n) for
a network with n nodes. As a result the signaling traffic in the overlay network
decreases significantly.

However, the current mainstream research on P2P concentrates on fixed IP
networks consisting of functionally equal nodes. As such, it usually neglects
eventual heterogeneity among the participating computing devices. In this paper
we focus on extending current DHTs to mobile environments. In order to do so,
we have to be aware of the challenges resulting from this large heterogeneity of
participating nodes, ranging from hard-wired work stations to GPRS-connected
mobile phones:

– Limited resources of mobile devices (CPU power, RAM size, storage capac-
ity) as well as low access data rates have to be addressed. Moreover, devices
cannot be modeled as one class of nodes but their heterogeneity requires
different consideration of different types of nodes.

– High costs for mobile data transfer lead to short online times of mobile
participants. Resulting we face a highly dynamic environment, characterized
by high churn rates.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 19–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 S. Zoels et al.

– The increased failure probability of mobile devices (due to wireless link
breaks, discharged batteries...) can result in a high number of lost object
references, which in turn may result in the (at least temporary) unavailabil-
ity of shared objects.

In this paper we address these requirements by proposing a hybrid DHT de-
sign. We define two classes of nodes, which we call ‘static’ and ‘temporary’, and
we assume that static nodes both perform routing tasks and maintain references
to the available objects in the system, while temporary nodes only perform
routing. In this way we disburden temporary nodes and avoid shifting object
references when temporary nodes join or leave the system. The result is signif-
icantly decreased overall maintenance traffic.1 Besides, we emphasize that this
approach has another important advantage: It enables the low performance nodes
(e.g. mobile terminals) to participate in a DHT based P2P network.

The work presented in this paper is an extension and a generalization of our
previously proposed Hybrid Chord Protocol [1].

The paper is organized as follows. Section 2 gives an overview of distributed
hash tables. Section 3 presents our hybrid DHT design in detail. In Section 4 we
present an illustrative set of simulations we performed to test the performance of
the proposed design. Section 4.1 illustrates the setup of simulation scenarios with
our traffic generator, while Section 4.2 shows and discusses simulation results.
Section 5 concludes this paper and gives an outlook to future work.

2 Distributed Hash Tables - Overview

The basic problem DHTs address is self-organized distribution of a set of objects
among a set of peers, enabling their subsequent fast lookup. In a DHT peers
collaboratively manage specific subsets of objects, identified by keys from a key
space K, which depend on the set of all peers and the set of all objects available
in the system. This is done by associating each peer with a key taken from K
and also associating with this key a partition of the key space such that the peer
becomes responsible to manage all objects identified by keys from the associated
partition. Typically the key partition consists of all keys closest to the peer key in
a suitable metric. Thus the key space K is equipped with a distance function d.
To forward query requests peers form a routing network by taking into account
the knowledge on the association of peers with key partitions.

In short, any DHT is equipped with a function key : P → K that associates
peers with keys and, given key(P), a function partition : K → 2K associating
peers with partitions of K, and a function neighbors : K → 2P that associates
each peer with a subset of other peers, making thus an overlay graph G [2].

Function key is a hash function mapping a peer’s IP address or a randomly
chosen string into a hash value. Please note that the set of all participating peers
at any time can be considered as parameter of the function partition; the inter-
pretation is that the objects must be assigned to the peers that are currently
1 Throughout the remaining paper we use the term ‘maintenance traffic’ synonymously

for the number of object references shifted to a joining node or from a leaving node.

Hybrid DHT Design for Mobile Environments 21

present in the system. A side goal of using a hash function to map object keys
to peers is balancing the load distribution: each peer should be responsible for
approximately the same number of keys. The function neighbors is responsible
for building the DHT routing graph. Using the metric of the key space, it nor-
mally enables peers to maintain short-range links to all peers with neighboring
keys and in addition a small number of long-range links to some selected peers.
Using thus established routing graph, peers forward query requests in a directed
manner to other peers from their routing tables trying to greedily reduce the
distance to the key that is being looked up. Most of DHTs achieve by virtue of
this construction and routing algorithms lookup with a number of messages log-
arithmic in the size of network by using routing tables which are also logarithmic
in the size of the network [3,4]. However, in recent few years there have been also
some works that achieve constant outdegree graph topologies and consequently
constant sized routing tables while retaining logarithmic routing [5,6]. To sum
up, the specific designs of these structures depend on the choice of key space,
distance function, key partitioning, and linking strategy. They have been subject
of intensive research over the recent years and resulted in numerous designs of
structured overlay networks.

However, the good properties related to the efficiency of routing do not come
for free. For constructing and maintaining a structured P2P network peers have
to deal in particular with the problem of node joins and failures. Since the free-
dom to choose neighbors in a structured P2P network is constrained by the
conditions imposed by the function neighbors, maintenance algorithms are re-
quired to re-establish the consistency of routing tables in the presence of network
dynamics. Depending on the type of guarantees given by the network different de-
terministic and probabilistic maintenance strategies have been developed. Main-
tenance actions can be triggered by various events, such as periodical node joins
and leaves or routing failures due to inconsistent routing tables. The different
maintenance strategies trade-off maintenance cost versus degree of consistency
and thus failure resilience of the network.

3 Hybrid DHT Design

The main goal of our hybrid DHT design is to enable participation of mobile
devices such as PDAs or mobile phones in a DHT based P2P lookup system.
It sets up a hybrid overlay structure by extending a given conventional DHT
protocol as to define two different types of nodes: static nodes and temporary
nodes. Static nodes are reliable nodes in the overlay network that are character-
ized by long online times, low failure probabilities and good hardware resources
(e.g. office computers with hard-wired connections to the Internet). All other,
low-performance nodes in the overlay network (e.g. all mobile participants such
as GSM mobile phones or WLAN PDAs) are temporary nodes.

We require a minor modification to the object mapping rules of the DHT:
In contrast to the conventional DHT protocol, a reference to a shared object is
stored on the closest static node of the object’s key. (The term “closest” refers to

22 S. Zoels et al.

the conventional DHT’s distance metric: in Pastry it is the height of the smallest
tree containing the two considered nodes, in Chord it is the simple difference of
the nodes’ identifiers.) In contrast, temporary nodes maintain only a pointer to
their succeeding static node. Thus whenever a temporary node in the network
receives an INSERT or QUERY request (due to its responsibility for the key given
in the request) it simply forwards this request to its closest static node which
in turn stores the according reference(s). Such hybrid structure can be realized
by calling different JOIN and LEAVE procedures when nodes connect to or quit
the overlay network, depending on the node class that this node belongs to (see
pseudocode in Figure 1).

n.joinStatic() n.leaveStatic()
setupRoutingTable(); n = find_next_static(n.id);
n = find_next_static(n.id); transfer_references(n);
transfer_matching_references(n); inform_neighboring_nodes();
start_timers(); stop_timers();

n.joinTemporary() n.leaveTemporary()
setupRoutingTable(); inform_neighboring_nodes();
n = find_next_static(n.id); stop_timers();
set_next_static(n);
start_timers();

Fig. 1. Pseudocode for hybrid system structure setup

The differentiation between static and temporary nodes has three major ad-
vantages:

– The heterogeneity of the participating nodes that results from extending the
overlay network to mobile environments is addressed.

– The maintenance traffic in the overlay network can be decreased significantly,
as object references have to be shifted only when static nodes (which have
long online times) join or leave the overlay network. Moreover, resource-
constrained temporary nodes are prevented from storing and providing ob-
ject references.

– Only reliable static nodes with low failure probability store references to
shared objects. Resulting, the probability that an object is available in the
system but the node(s) that is (are) responsible for storing a reference to
it has failed is reduced. Consequently, the availability of provided content
increases.

The extension we just presented assumes that there are two classes of nodes,
static and temporary, defined independently of the current state of the system
(i.e. the properties of the nodes available in the system). Thus any node can un-
ambiguously determine to which class it belongs. In principle, it should be pos-
sible to make a step further and remove this constraint as to make a node class
dependent on the system state at any time instant (a joining node might assess
the current state of the system based on the properties of the nodes encountered
in the joining process) and enable the total work division according to the nodes
relative capabilities. We plan to investigate such extension in the future.

Hybrid DHT Design for Mobile Environments 23

4 Simulations

In this section, we present the results from a series of simulations, in which
we compare the conventional Chord protocol [4] and the Hybrid Chord Proto-
col (HCP), obtained by applying the above described modifications to Chord.
The results show the significant advantages of HCP in scenarios with resource-
constrained mobile participants.

4.1 Simulation Setup

To evaluate and compare the performance of conventional Chord and HCP we
implemented both protocols in the Network Simulator 2 (NS-2) [7]. Since NS-2
simulates the complete packet flow through all layers of the ISO/OSI reference
model, it requires a high amount of CPU power and Random Access Memory.
Resulting, the size of the simulated overlay network is limited to only a few hun-
dred nodes. In order to be able to simulate even larger overlay networks (typical
for P2P networks) we modified the NS-2 implementation of both protocols so
that only the overlay network is simulated. With this so-called L7Sim (Layer
7 Simulator), messages are exchanged directly between the P2P applications,
without making use of the underlying layers of the ISO/OSI reference model.
The delay of physical links is thereby represented by an equally distributed de-
lay between 10 ms and 200 ms. The convergence of both approaches is shown in
Section 4.2. To set up simulation scenarios we implemented a traffic generator
that performs the following tasks:

– Definition of different node classes. For the simulated overlay networks,
different classes of participating nodes can be defined. Appropriate parame-
ters for node classes are the mean online time, the failure probability (i.e.,
the probability that a node leaves the overlay network without notifying
other nodes), the number of shared objects, and the average query rate. For
NS-2 simulations, also the data rate and the delay of the physical link to the
core network can be defined.

– Creation of an initial overlay network. The traffic generator creates
an initial Chord/HCP overlay structure with a given number of nodes, in-
cluding the setting of predecessor pointer, successor list, finger table, next
static pointer (for temporary HCP nodes) and provided content. For NS-2
simulations, it also connects the overlay nodes to the core network. The core
network emulates the physical IP connections between the overlay nodes.
It consists of 100 core nodes and is created with the BRITE [8] topology
generator.

– Generation of an eventfile. The eventfile is created according to the
specified parameters and is used as input for both network simulators.

Figure 2 shows the setup of an exemplary simulation scenario with the traffic gen-
erator using three node classes. In detail the simulation process runs as follows:
Firstly, the traffic generator reads the scenario file and generates – according to
the parameters given in the scenario file – an output file containing the initial

24 S. Zoels et al.

nodeclass WLAN_NOTEBOOK
mean_online_time 3600s
failure_probability 10%
shared_objects 50
query_rate 300s
link datarate 1Mb delay 10ms

nodeclass UMTS_PHONE
mean_online_time 1800s
failure_probability 25%
shared_objects 20
query_rate 120s
link datarate 384kb delay 120ms

nodeclass GPRS_PHONE
mean_online_time 900s
failure_probability 50%
shared_objects 5
query_rate 60s
link datarate 100kb delay 400ms

initial
100 WLAN_NOTEBOOK
100 UMTS_PHONE
100 GPRS_PHONE

simulation-duration 1h

Fig. 2. Scenario file for the setup of a simulation scenario

overlay network as well as simulation events. Simulation events are composed
of NODE-JOIN, NODE-LEAVE, NODE-FAILURE and QUERY events. Secondly,
the generated file is taken as input for the used network simulator, which in turn
produces a tracing file that can be analyzed with appropriate evaluation tools.

4.2 Simulation Results

Based on multiple independent simulations, we evaluate HCP in comparison to
the conventional Chord protocol. The focus of the following simulations is put
onto the decreased maintenance traffic and the increased availability of provided
content that can be achieved with HCP.

In a first simulation we set up a network with 100 overlay nodes which are
connected randomly to the core network. The main goal of this simulation is
to evaluate the differences between simulating the overlay network on top of
a physical network using the complete protocol stack (NS-2) and simulating
the overlay network independently, without considering the physical topology
(L7Sim). Thus we want to determine the impact of lower-layer parameters such
as queue length, packet loss or link latency on our simulations. Table 1 shows
all relevant simulation parameters for this simulation scenario.

By varying the mean online time2 of temporary nodes from 600 s to 1800 s,
we create seven different independent eventfiles. We simulate each eventfile with
2 The traffic generator determines the online time of each participating node follow-

ing a negative-exponential distribution, with mean value given in the node class
definition in the scenario file.

Hybrid DHT Design for Mobile Environments 25

Table 1. Simulation parameters for scenario 1

Number of node classes: 2

Node class: STATIC TEMPORARY
Mean online time: 1800 s (neg. exp. dist.) 600 s - 1800 s (neg. exp. dist.)
Number of shared objects: 10 per node 10 per node
Physical link: 1 Mb/s, 10 ms delay 100 kb/s, 100 ms delay

Mean number of nodes: 100
Partitioning: 10 static, 90 temporary

Simulation duration: 4 hours

10000

30000

50000

10000 30000 50000

Number of transfers in L7SIM

N
um

be
r

of
 tr

an
sf

er
s

in
 N

S
-2

Chord

HCP

Ideal value

Fig. 3. Scenario 1: Maintenance traffic in both simulators

both protocols in NS-2 and in L7Sim, and compare the total number of trans-
ferred object references (i.e. the resulting maintenance traffic) in both simulators.

As we see from Figure 3, the measured numbers of transferred object refer-
ences are nearly the same in both simulators. The marginal differences in NS-2
result from a negligible packet loss in the physical layer. Resulting we can state
that simulating only the overlay network, without considering the underlying
physical topology, is sufficient for our analysis.

The basic criterion for comparing maintenance traffic in HCP and in Chord is
the ratio α of the mean online time of static nodes in HCP and the mean online
time of all nodes in Chord:

α =
Mean online time of static nodes
Mean online time of all nodes

As stated in section 3, HCP stores object references only on static nodes. There-
fore, the mean online time of static nodes is crucial for the maintenance traffic
in HCP, as object references have to be shifted whenever a static node joins
or leaves the overlay network. In contrast, Chord stores object references on all
nodes in the overlay network, so the mean online time of all nodes is decisive for
the maintenance traffic in Chord. By theoretical evaluation (see Appendix) we
can show that the maintenance traffic in HCP is lowered by a factor of 1/α in
comparison to Chord.

26 S. Zoels et al.

In the above simulation scenario we obtain different values for the ratio α from
the varying mean online time of temporary nodes. Figure 4 shows a comparison
of the resulting maintenance traffic. It illustrates the percentage of transferred
object references in HCP in comparison to Chord, depending on the ratio of mean
online times α. The simulation results coincide with our theoretical evaluation
that HCP reduces maintenance traffic by a factor of 1/α compared to Chord.

0%

50%

100%

150%

0,0 1,0 2,0 3,0

Ratio of mean online times

N
um

be
r

of
 tr

an
sf

er
s

in
 H

C
P

in
 c

om
pa

ris
on

 to
 C

ho
rd

Simulation

Theory

Fig. 4. Scenario 1: Maintenance traffic in HCP compared to Chord

Our next simulation aims at the verification of this theoretical evaluation in
a large overlay network with a high percentage of mobile participants, and by
a lot of different independent simulation runs. Therefore, we create multiple
simulation scenarios according to the setup parameters given in Table 2. Please
note that we vary the mean online time of static nodes from five to fifty minutes.

Table 2. Simulation parameters for scenario 2

Number of node classes: 2

Node class: STATIC MOBILE
Mean online time: 300 s - 3000 s (neg. exp. dist.) 300 s (neg. exp. dist.)
Number of shared objects: 1 per node 1 per node

Mean number of nodes: 1000
Partitioning: 100 static, 900 mobile

Simulation duration: 2 hours

Due to the high number of overlay nodes, and based on the findings of our
first simulation we confine ourselves to simulate this scenario only in the overlay
simulator L7Sim. We generate 56 different eventfiles with a ratio of mean online
times α ranging from 0.99 to 8.93. The individual values for α result directly
from the varying mean online time of all participating nodes in each scenario
file. In Figure 5, the resulting maintenance traffic of all 56 simulation runs is
depicted for both protocols. As expected, the total number of transferred object

Hybrid DHT Design for Mobile Environments 27

references in Chord nearly stays at a constant level, because the mean online
time of all nodes in the overlay network only changes slightly (please note that
90% of the overlay network is formed by mobile nodes that have a constant mean
online time of about 300 s). On the other hand the mean online time of static
nodes rises from 300 s to 3000 s in average. Along with this increasing ratio α
comes significantly decreased maintenance traffic in HCP. With this simulation
we can prove our theoretical evaluation: As we can see in Figure 5, the amount
of transferred object references in HCP decreases with 1/α, while it remains
constantly high in Chord.

0

25000

50000

0,0 2,0 4,0 6,0 8,0 10,0

Ratio of mean online times

N
um

be
r

of
 tr

an
sf

er
s

Simulation Chord

Simulation HCP

Theory HCP

Fig. 5. Scenario 2: Maintenance traffic

So far, we have considered theoretical simulation scenarios with only two
different node classes. To evaluate HCP in a more realistic scenario, we set up
a heterogeneous overlay network with 2000 nodes, partitioned into five different
node classes: 100 office computers, 700 DSL subscribers, 400 ISDN users, 400
PDAs, and 400 mobile phones. Table 3 illustrates the modeling of these nodes
classes.

Table 3. Simulation parameters for scenario 3

Number of node classes: 5

Node class: OFFICE DSL ISDN PDA PHONE
Mean online time: 24 h 2 h 30 min 10 min 2 min
Failure probability: 0.1% 5% 10% 35% 50%
Number of shared objects: 0-30 0-30 0-15 0-8 0-5
Average query rate: 1 every... 10 min 8 min 5 min 1 min 20 s

Simulation duration: 1 hour

Again, the mean online time and the average query rate of overlay nodes are
negative exponentially distributed and the number of shared objects is distrib-
uted equally between the given minimum and maximum value. The simulated
time is one hour. When simulating HCP, only nodes that belong to the node

28 S. Zoels et al.

classes OFFICE and DSL are allowed to become static nodes, and thus to store
references to shared objects. All following simulation results represent the aver-
age values calculated from 10 independent simulation runs.

Figure 6 shows the maintenance traffic of both protocols over time, simulated
with L7Sim. Since a large part of the network consists of nodes with low mean
online times, we notice a continuously high amount of transferred object ref-
erences in Chord. In contrast, HCP offers significantly decreased maintenance
traffic, as object references are stored only on static nodes (OFFICE and DSL
nodes) which are characterized by long online times.

0

2500

5000

0 5 10 15 20 25 30 35 40 45 50 55

Time [minutes]

N
um

be
r

of
 tr

an
sf

er
s

pe
r

m
in

ut
e

Chord
HCP

Fig. 6. Scenario 3: Maintenance traffic over time

In a second step we evaluate the content availability in both protocols, rep-
resented by the success rate of queries. We define the success rate λ of a query
by dividing the number of providing hosts given in the query result by the real
number of hosts currently providing the searched object. For example, when ob-
ject X is shared by hosts A, B and C, and a query for X returns B and C as
sharing hosts, the success rate of the query is λ = 2/3 = 67%.

In Figure 7 the cumulative distribution of queries is plotted against the query
success rate.3 Chord can resolve 61.2% of all queries with 100% query success
(i.e., the query result contains all providing hosts), but at the same time shows a
sizeable fraction of non- or low-successful queries that return no or only a small
number of currently providing hosts. These non- or low-successful queries result
from failures of nodes that store the references to providing hosts, and from the
fact that the providing hosts have not yet republished their shared objects. In
contrast to Chord, HCP offers excellent query success rates. 95.5% of all queries
in HCP return all currently providing hosts (λ = 100%) and only 1.1% of all
queries have a success rate less than 80%.

Thus, the above simulations prove the increased content availability in HCP
that results from storing object references only on reliable static nodes. From
3 An important parameter for this simulation is the refresh period for shared objects.

It was set to 900 s, i.e. every shared object is republished by its owner every 15
minutes, in order to keep the object references in the system up-to-date.

Hybrid DHT Design for Mobile Environments 29

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Query success

P
er

ce
nt

ag
e

of
 q

ue
rie

s
Chord

HCP

Fig. 7. Scenario 3: CDF of query success rates

our point of view, content availability is an important aspect when developing
DHT-based services, as query success is a major criterion for user acceptance
and hence the number of customers.

5 Conclusion

In this paper we presented a hybrid DHT design, which we applied to Chord to
obtain the Hybrid Chord Protocol (HCP). We then evaluated its advantages in
comparison to the conventional Chord algorithm. The introduced design aims
primarily at the extension of structured DHT based P2P protocols to mobile
environments, where a major part of the overlay network consists of resource-
constrained mobile participants such as PDAs or mobile phones. By defining two
different types of participating nodes, static and temporary nodes, the design
allows disburdening of mobile participants, significantly decreased maintenance
traffic and increased availability of provided content.

We performed multiple simulations of Chord and HCP in different scenarios.
The simulations proved our theoretical analysis that HCP reduces the mainte-
nance traffic by a factor of 1/α in comparison to Chord, with α as the ratio of the
mean online time of static nodes in HCP and the mean online time of all nodes
in Chord. Moreover, our simulations verify the increased availability of provided
content, and they show that it is sufficient for the evaluation of maintenance
traffic to regard only the overlay network, without considering the underlying
physical topology.

References

1. Zoels, S., Schollmeier, R., Kellerer, W., Tarlano, A.: The Hybrid Chord Protocol: A
Peer-to-Peer Lookup Service for Context-Aware Mobile Applications. In: ICN 2005
(2005)

2. Aberer, K., Alima, L., Ghodsi, A., Girdzijauskas, S., Hauswirth, M., Haridi, S.:
The Essence of P2P: A Reference Architecture for Overlay Networks. In: P2P 2005
(2005)

30 S. Zoels et al.

3. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Rout-
ing for Large-Scale Peer-to-Peer Systems. In: IFIP/ACM DSP 2001 (2001)

4. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: SIG-COMM 2001 (2001)

5. Kaashoek, M., Karger, D.: Koorde: A Simple Degree-Optimal Distributed Hash
Table. In: SODA 2004 (2004)

6. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In: PODC 2002 (2002)

7. NS-2, The Network Simulator NS-2 Homepage, http://www.isi.edu/nsnam/ns
8. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Universal Topology Genera-

tion from a User’s Perspective, Technical Report BU-CS-TR-2001-003 (2001)

Appendix: Theoretical Evaluation of Maintenance Traffic

Assume an overlay network with N nodes and a total number of R references
to shared objects. In this case, each node is responsible for storing r = R/N
references in average. Thus r object references have to be shifted when a node
joins or leaves the overlay network. The total number of join and leave events
e in a simulation scenario is determined by the number of nodes, their mean
online time T and the simulation duration D:

e = N · (2/T) · D

Resulting, the total number of object references transferred to a joining or from
a leaving node during a simulation (i.e., the maintenance traffic) is given by

m = e · r = 2 · D · R/T

From this equation we can now evaluate the reduced maintenance traffic in an
HCP system. Since HCP stores object references only on static nodes with mean
online time THCP,static, the total number of transferred references in an HCP
simulation is

mHCP = 2 · D · R/THCP,static

whereas Chord generates a total number of

mChord = 2 · D · R/TChord

transfers. The total number of references R and the simulation duration D re-
main constant in both cases. By definition, the mean online time of static HCP
nodes is significantly higher than the mean online time of all nodes in a Chord
system. Under the assumption that THCP,static = α · TChord the generated main-
tenance traffic in HCP is decreased by a factor of

mHCP/mChord = TChord/THCP,static = 1/α

in comparison to the conventional Chord protocol.

http://www.isi.edu/nsnam/ns

DANTE: A Self-adapting Peer-to-Peer System

Luis Rodero Merino1, Luis López1, Antonio Fernández1, and Vicent Cholvi2

1 LADyR, Universidad Rey Juan Carlos,
28933, Móstoles, Spain

{lrodero,llopez,anto}@gsyc.escet.urjc.es
2 Universitat Jaume I,
12071, Castellón, Spain
vcholvi@lsi.uji.es

Abstract. In this paper we introduce DANTE, an unstructured P2P
system in which the topology of the underlying overlay network can
be dynamically adapted to the system conditions. Such an adaption is
performed by the peers in an autonomous manner. DANTE uses a sim-
ple search mechanism based on random walks that, combined with the
topology adaptation, allows it to work in a very efficient way. We have
evaluated how DANTE behaves in practice, showing that it successfully
adapts to varying system load conditions.

1 Introduction

Peer-to-peer (P2P) systems [1] are one of the most important revolutions hap-
pening in the Internet today, offering new and richer communication opportuni-
ties for Internet users. P2P is a new communication paradigm in which resources,
such as media files, services, data, etc., are both provided and consumed by all
participants (also called peers or network nodes). This contrasts with the tradi-
tional client-server model, in which the role of each participant is restricted and
well defined. In P2P systems, instead, each participant is at the same time a
server, because it offers resources, and a client, because it demands them. Clear
advantages of P2P systems, compared to classical systems, are their flexibility,
scalability, and fault tolerance. These properties are mainly due to the lack of
any central entity that coordinates or controls the peers. Nonetheless, the lack
of a central coordinator has brought many new technical challenges to be solved.

One of the key issues that any P2P system has to face is how to efficiently
locate resources. In most systems, to do so, peers that demand resources issue
queries or searches that cause search messages to travel through the overlay
network, looking for peers where those resources are offered. The search mecha-
nism implemented by the P2P system dictates how search messages are routed
through the overlay network. Roughly speaking, P2P systems and their search
mechanisms can be classified as either structured or unstructured. Structured
P2P networks (see [2] for examples) use specialized placement algorithms to as-
sign responsibility for each resource to specific peers, as well as a “directed”
search mechanism to efficiently locate resources. Directed search mechanisms

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 31–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 L. Rodero Merino et al.

are particularly efficient, because they efficiently route queries towards the peers
responsible for a given resource. Additionally, they usually require few commu-
nication steps, generate little traffic, and do not produce false negatives (i.e., the
search fails only if the demanded resource is not in the system).

In contrast, unstructured P2P networks (e.g., Gnutella [3]) have no precise
control over the resource placement and generally use search mechanisms based
on “flooding” or random walks. Search mechanisms based on flooding or ran-
dom walks are usually less efficient than directed search mechanisms (queries are
broadcast in a whole neighborhood or sent in random walks) and may yield false
negatives. They have, however, very little management overhead, adapt well to
the transient activity of P2P clients, take advantage of the spontaneous replica-
tion of popular content, and allow to perform queries by keyword in a simpler way
than with directed search protocols. These properties seem to make unstructured
P2P systems very suitable for mass-market distributed resource sharing. Flood-
ing, nonetheless, presents the problem of scalability, as the network bandwidth
consumed by search messages grows very quickly with the number of nodes and
the scope of those messages. Thus, search mechanisms based on random walks
have gained growing attention from the research community, which is looking
for new ways to improve their efficiency. A new and promising technique to do
so is the use of overlay networks with dynamic topologies.

In the next section we present DANTE1, an unstructured P2P system in which
the topology of the underlying overlay network is dynamically adapted to the
system conditions. Furthermore, DANTE also uses a simple search mechanism
based on random walks. In Section 3 we show how those features allow DANTE
to work in an autonomous and efficient manner. Finally, Section 4 discusses
other P2P systems that also use random walks along with dynamic topologies,
and Section 5 concludes the paper.

2 DANTE

In this section, we describe DANTE, a P2P system that, as it has been said
previously, uses a mechanism to form topologies that self-adapt depending on the
network load conditions. Such an adaptation is performed by the peers without
the need of global information, nor any central system to control their actions.
To achieve this, each node runs a reconnection mechanism (described in detail in
Section 2.2), that decides to which other peers it must connect to in the overlay
network.

2.1 Resource Searches in DANTE

In DANTE, each node holds a set of resources and maintains an index of the
resources held by its neighbors in the overlay network. Using this information, a
node can explore its neighborhood at no communication cost. Clearly, in general,
this also increases the success rate and reduces the network traffic, at a moderate
storage cost increase.
1 From Dynamic self-Adapting Network TopologiEs.

DANTE: A Self-adapting Peer-to-Peer System 33

All peers can issue queries, which are performed by using random walks. Then,
when a peer issues a query, it first locally checks if the searched resource is held
by itself or by one of its neighbors. If this check succeeds, then the search fin-
ishes successfully. Otherwise, the node issues a TTL2-limited Look For Resource
(LFR) message that is sent to a neighbor chosen uniformly at random. On the
reception of that message, the receiving node operates in the same way as the
first requesting node. The process ends when the resource is found, thus reply-
ing to the issuing peer with a Resource Found message (RF), or when the TTL
expires, replying with a Resource Not Found (RNF) message.

2.2 DANTE Self-adaptation Mechanism

The self-adaptation mechanism used in DANTE is inspired on the results of
Guimerà et al. [4] and of the algorithm proposed by Cholvi el al. [5]. Briefly,
Guimerà et al., by means of using a combination of analytical and simulation
techniques, were able to characterize the topologies that, given a search mech-
anism based on random walks and assuming that each node has information
about the resources held by its first-order neighbors, minimize the average time
needed to perform a search. Clearly, those topologies should be the topologies
of choice in practical overlay networks. They found that, when the system is
not congested, the topology that provides the best results is a star-like structure
formed by a small number of central nodes with the rest of nodes connected
to them. Furthermore, they also found that when the system is congested, the
topology that provides the best results is a random-like one. But, perhaps more
importantly, they reported that there is a sharp transition between these two
topologies. However, the approach followed by Guimerà et al. assumes a global
knowledge of the network, which is usually not available in a real P2P system.
A practical topology adaptation mechanism that fits P2P systems should be run
locally at the nodes, and should not need global knowledge.

In order to put these results to work, in [5], the authors proposed a mechanism
that, depending on the current system load, makes nodes to locally change their
connections so that the obtained topologies are random-like for high loads and
star-like for low loads. To achieve this, they used a reconnection mechanism that
assigns a value Πi to each node i of the network. Such a value tries to capture
the “willingness” of a node to accept new connections. Then, the destination of
a changed connection is chosen using probabilities proportional to these values.
Unfortunately, this mechanism cannot be directly applied to P2P systems, since
although the value Πi can be locally computed at node i, to choose the new
neighbors of a node all values Πi have to be known at the node.

In the rest of the section, we explain how the above mentioned problems are
solved in DANTE. As said above, in DANTE each peer knows its own resources
as well as the resources held by its neighbors. Based on this, it is easy to under-
stand that nodes will be more interested on being connected to peers with many
neighbors. Therefore, DANTE encourages peers to establish connections with

2 Time-To-Live, the maximum number of links the message will traverse.

34 L. Rodero Merino et al.

high degree nodes. However, this holds only as long as these highly connected
nodes can handle all the incoming traffic. If the number of queries is high, a
well- connected peer may receive more search messages that it can manage, thus
becoming congested. To face this, the mechanism used in DANTE considers all
congested nodes as the worst possible candidates, regardless of their degree.

Taking this into account, DANTE uses an algorithm that, when the net-
work traffic is low, drives the network to a star-like overlay topology. Thus,
searches could be answered in only one hop, since the central nodes will know
all the resources in the system. In turn, when the number of searches increases,
well-connected nodes will become congested and their neighbors will start to
disconnect from them. Hence, this will drive the network to a random-like topol-
ogy that although makes search messages to traverse longer paths to find some
resource, will perform better than using a highly congested central node.

More specifically, in DANTE each node can establish connections to other
nodes. We say that a connection is native for the establishing node and foreign
for the accepting node. Nodes can change their native connections, but not their
foreign ones. Furthermore, each node periodically runs a reconnection mechanism
with which native connections are changed. This mechanism firstly obtains a list
of potential candidates to which it can connect (this is described in Section 2.3).
Then, it assigns a probability to each candidate, and chooses candidates at ran-
dom using their respective probabilities. Finally, the peer reconnects its native
connections to the chosen candidates.

The probability assigned to a candidate i is based on its “attractiveness”,
denoted as Πi and defined as

Πi = kγi

i , (1)

where ki is the degree (number of neighbors) of peer i, and γi is computed as

γi =

{
2 if node i is not congested
0 otherwise.

(2)

So, Πi is set to 1 if peer i is congested, and to k2
i otherwise (note that the

congestion of a node is a value that can be measured directly from the node’s
local state). Based on the values Πj for each candidate j in a set C of candidates,
we assign to peer i the probability pi of being chosen as

pi =
Πi∑

j∈C Πj
. (3)

As it can be readily seen, nodes with higher attractiveness will be chosen with
higher probability. Therefore, in DANTE there is a tendency to connect to nodes
with high degree, unless those peers are congested.

The rationale behind the assignment of probabilities is as follows. First, note
that it is known [6] that by assigning the same probability to each node, one
obtains a random-like topology. This is achieved when all nodes are congested
and so Πi is set to 1 for all nodes. In turn, if no node is congested and the value of
Πi is set to k2

i for each node i, one obtains a star-like topology [6]. Consequently,

DANTE: A Self-adapting Peer-to-Peer System 35

the network will evolve towards a random-like topology when many nodes get
congested and towards a star-like topology otherwise. Remember that this will
provide us with the topologies of choice, both at low and high network loads.

2.3 Peer Sampling

In order to provide peers with sets of candidates (and their congestion level)
to apply the heuristic presented in the previous section, DANTE uses a special
message Look For Nodes (LFN) that is used for collecting information about
the state of the network. This message traverses the network following a TTL-
limited random walk, storing information about the nodes it visits. When the
message TTL expires, a Nodes Found (NF) message is sent to the message’s
source node, carrying the information about the peers the LFN message visited.
Then, the decision is taken considering only this information.

Clearly, if reconnections are not very frequent, this technique of sampling the
peers has very small incidence on the network load. Furthermore, it has been
shown [7, 8] that the sample obtained with this mechanism is a good sample of
the overall network. Indeed, when the network has highly connected nodes or
hubs (possibly due to low or medium loads), since the collecting message follows
a random walk, these hubs will be reached with higher probability than poorly
connected nodes. This is good since peers are mainly interested on hubs for
reconnections. On the other hand, when the network is random (possibly due
to high load), all nodes will have roughly the same degree, and then the chosen
nodes will be representative of the whole network.

Other mechanisms than using random-walk messages could be considered for
the purpose of collecting information. Gossiping, for example, could be used to
spread information about peers, as in [9]. However, any peer sampling solution
must fulfill some requirements. First, information about well connected, high
capacity nodes should be more likely to be found. Second, it must be avoided
to spread old information about peers state (that can get out of date quickly).
Finally, a low communication overhead should be required by the sampling mech-
anism. Our experiments show empirically that random-walks are well suited to
these requirements.

2.4 DANTE Robustness

Another interesting feature of DANTE is its robustness against node failures.
This comes from the fact that when a peer enters or leaves the network, only its
neighborhood is affected. Therefore, if the current network topology is random-
like, a very small number of peers will notice the change. The same will happen
if the current network topology is star-like and the node that leaves is not a
central one. Even in the worst case, when a central node disappears, the system
still will be able to keep working, since there are several central nodes (as many
as the number of native connections of each peer). Furthermore, the DANTE
adaptation mechanism also guarantees that some other node will quickly become
central and replace the peer that disappeared.

36 L. Rodero Merino et al.

3 DANTE at Work

A prototype of DANTE, as described above, has been implemented and used
to evaluate the properties of the system. The prototype has been developed in
Java and works over UDP3. Experiments performed with this implementation on
a real network have confirmed that, as expected, the overlay network topology
evolves as the load on the system changes, ranging from star-like topologies under
low load to random-like topologies under high load. Moreover, our experiments
also show that these topologies present the best performance for these load levels.

3.1 Experimental Setup

We start by describing the configuration we have used to run the experiments
of DANTE’s prototype. Our experiments have been executed with 42 peers,
each with three native connections. (Initially, the network had a random topol-
ogy.) Peers hosted disjoint sets of resources, all containing 5000 resources. (Note
that there was no replication.) Every peer periodically issued a new query, in
which the resource to search was chosen uniformly at random from the set of all
resources in the system. The load in the system was controlled by the query gen-
eration rate, which was the number of queries per minute issued by every peer in
the system. This rate was fixed for each experiment. We have run experiments
with values of the query generation rate from 2 to 12 in steps of 2.

In the experiments conducted each query was issued with a TTL of 30. This
value was empirically chosen in order to maintain a high success rate in searches
(few false negatives). With this TTL value the rate of successful searches has
been above 99% for all experiments, except when the topology was fully random,
that had a 96% success rate.

In our experiments all peers had the same real processing power, since it was
the same software running on similar hardware4. In each experiment, there was
a global parameter named capacity threshold (or just threshold). This param-
eter intended to summarize the level of load every peer can take before being
congested. In our prototype the threshold represents the maximum number of
queries per minute a peer can handle: if a peer receives a number of queries per
minute greater than this threshold, the node is considered to be congested. We
have run experiments with 5 different threshold values, namely, 0, 10, 50, 100,
and 1,000,000.

Each experiment has been run for 120 minutes, out of which we have ana-
lyzed only the queries started between minutes 16 and 75, both included (to
avoid initial transient states and unfinished searches). During the experiments,
DANTE’s adaptation mechanism has been triggered periodically at each peer
3 The source code of the prototype is available at http://ladyr.es/dante/.
4 Although typical P2P systems have peers with different capacities, the resulting

topologies in these heterogeneous systems under very low and very high loads would
be similar to the ones obtained here. Furthermore, heterogeneity could improve the
network performance, as the peers with higher capacity would become hubs, and
hence the number of hops needed to find resources would be decreased.

DANTE: A Self-adapting Peer-to-Peer System 37

every 30 seconds. Each time this happened, the peer changed its three native
connections simultaneously.

3.2 Topology Adaptation

The first fact that can be observed from the experiments conducted is that the
network topology actually adapts itself to the load in the system. This fact can be
readily observed in Figure 1. This figure shows the network topologies obtained
with the same threshold (of 10) under three different load levels. In Figure 1.(A)
the system is lightly loaded. As expected, the network has evolved to a star-like
topology. In Figure 1.(C) we see the overlay network obtained under high load,
which forms a random-like topology.

(A) Star-like topology
Low load

(B) Clustered topology
Medium load

(C) Random-like topology
High load

Fig. 1. Overlay topologies obtained in DANTE’s prototype with (A) low, (B) medium,
and (C) high load

It is interesting to observe the overlay network topology obtained under
medium load, shown in Figure 1.(B). As it can be observed, the topology is
somewhere in between a random-like and a star-like. In these networks obtained
under medium load there are hubs that know many other peers. This, in general,
will allow queries to finish in fewer hops than with a fully random topology.

Regarding topology adaptation, we have two especial sets of experiments in
which no topology change is observed. The first set is the one done with a thresh-
old value of 0. With this threshold all peers permanently consider themselves to
be congested, and hence the resulting topology is always random-like, indepen-
dently of the load. The second is the set of experiments done with a threshold
value of 1,000,000. Since no peer ever receives that many queries per minute,
then no peer ever considers itself congested. This makes the network to form a
star-like topology regardless of the load on the system. These two sets of exper-
iments have been run to have a reference on the performance of systems with
pure random-like and star-like topologies.

3.3 Performance

We study now the search performance observed in our experiments under differ-
ent topologies and loads. To measure the search performance we use the mean

38 L. Rodero Merino et al.

search time, which is computed as the average time taken to complete a query.
A query is completed when either the issuing peer finds out the peer holding
the resource or it receives a message indicating that the query failed. The val-
ues of the mean search time for all the experiments conducted are presented in
Figure 2. The values that correspond to executions with the same threshold are
connected.

A first look at Figure 2 allows to confirm the analytical results of Guimerà [4].
On the one hand, among those considered, the star-like topology (threshold
1,000,000) has the best performance under low load. The random-like topology
(threshold 0), on the other hand, has the best performance under high load.
Interestingly, the random-like topology has the worst performance under low
load while the star-like topology has the worst performance under high load,
justifying the interest on topology adaptation.

topology
Star−like

Random−like
topology

 1

 10

 100

 12 10 8 6 4

 10000

 1000

 2

Threshold 1000000

M
ea

n
se

ar
ch

 ti
m

e
(s

ec
s)

Threshold 100

Threshold 10

Threshold 0

Threshold 50

Query generation rate (queries/min)

Fig. 2. Results of DANTE’s prototype execution

A second conclusion that can be extracted from Figure 2 is that, when us-
ing a proper threshold, DANTE makes the network evolve to a topology with
good performance given the system load. That is the objective of DANTE’s
adaptation mechanism: the network is able to self-adapt to the load conditions,
trying to keep the topology close to optimal. Interestingly, the overall perfor-
mance depends on tuning the threshold value properly. As it can be observed,
while the three “reasonable” thresholds considered (10, 50, and 100) guarantee
close to optimal performance under extreme load conditions, their performance
at medium loads is not the same. For a query generation rate of 6 the exper-
iments with threshold 10 show bad performance, because the threshold is too
small and prevents the network to evolve to a star-like topology (which seems
to be the optimal for this load).

DANTE: A Self-adapting Peer-to-Peer System 39

3.4 Scalability

We now study how DANTE’s performance changes as the number of peers in-
creases. To do so, we fix a query generation rate and run experiments with
systems of different sizes. Since the query generation rate is fixed, peers issue
queries at the same rate, independently of the size. However, since most queries
cannot be completed locally, the average load per peer (number of queries pro-
cessed by the peer) will grow with the size (even in a star-like topology). This
means that we cannot expect to observe that the mean search time remains
constant as the network size grows (which is a classical definition of scalability).

In order to evaluate systems with thousands of peers we have developed a sim-
ulator of DANTE5, which captures the essence of both DANTE and its proto-
type. Then, we have run simulations under similar conditions as the experiments
done with the prototype. We performed simulations with five different network
sizes, namely, 30, 100, 300, 1000, and 3000, and three different threshold values,
namely, 0, 100, and 1,000,000. In all cases the query generation rate was fixed to
one query every 100 seconds. In order to guarantee a high success rate6 we set
the TTL for query messages to n log n for a system with n peers (this estimation
is based on results in [10]), and fixed the TTL of LFN messages to 25 (which
empirically provided a good peer sample, even for 3,000 peers).

The results obtained from the simulations are presented in Figure 3. There it
can be seen that the star-like topology (threshold value of 1,000,000) shows very
good performance for networks with few peers. However, as the number of peers
increases, the central nodes get congested and the performance degrades quickly.

 1

 10

 100

 1000

 10000

 3000 1000

M
ea

n
se

ar
ch

 ti
m

e
(s

ec
on

ds
)

Number of nodes

Threshold 0 (always random−like)

Threshold 10000000 (always star−like)

 30 100 300

Threshold 100

Fig. 3. Results of DANTE scalability simulations

5 We could not run those experiments in a real network since this requires having an
infrastructure formed with thousands on peers.

6 All completed searches were successful.

40 L. Rodero Merino et al.

On the other hand, the random-like topology (threshold value of 0) shows a com-
paratively bad performance for low number of peers, but its relative performance
improves as the number of peers increases. As expected, the experiments with
threshold 100 present the very desirable feature that for small networks show a
performance close to that of the star-like topology, while a performance close to
that of a random-like topology for large networks. Interestingly, for medium size
networks (1000 peers) this threshold shows better performance than both the
star-like and the random-like topologies.

4 Related Work

There are mainly two proposed systems that are directly related with DANTE.
Both works already propose to combine dynamic topologies with random walks
to improve the performance of the P2P system. First, Lv et al. [11] have in-
troduced a P2P system in which nodes avoid congestion by means of a flow
control mechanism that changes the topology, trying to make messages to tra-
verse nodes with higher capacities. To do so, every node checks periodically its
load. When the node is overloaded, it redirects its most active neighbor (the one
sending most queries) to some of its neighbors with spare capacity. Thus, higher
capacity nodes tend to have more connections, and so manage more queries.

Then, Chawathe et al. [12] have proposed Gia, a system that tries to avoid
overloading nodes by explicitly accounting for their capacity constraints. In Gia,
queries are forwarded to high capacity nodes, which should be more able to
handle them. An active flow control mechanism avoids overloading hot spots:
each node notifies its neighbors the number of queries they can send to it, which
depends on its spare capacity. Topology is also adapted dynamically by a mech-
anism based on nodes level of satisfaction, which measures the distance between
a node’s capacity to the sum of its neighbors capacities, normalized by their
degrees. This parameter determines whether or not each node will adapt the
topology, and the frequency of these adaptations.

DANTE differs substantially from these two proposals. First of all, DANTE
is the first P2P system to apply the results of Guimerà et al. on the relation-
ship between network topologies and search performance. Based on that work,
DANTE’s self-adaptation mechanism continuously tries to configure the network
topology to an efficient configuration depending on the load on the system. An-
other difference, is that nodes in DANTE do not need to keep track of their
neighbors state, nor to implement any explicit flow control technique. Thus,
DANTE avoids the communication overhead due to those activities.

5 Conclusions

P2P systems are a promising new paradigm, specially suited to situations where
there is not a hierarchy among system participants. However, the lack of cen-
tral entities in the system demands innovative solutions to new problems. For

DANTE: A Self-adapting Peer-to-Peer System 41

example, users do not have a central repository to ask for the location of re-
sources. To face this problem, new search techniques must be devised.

Recent research has shown the key importance of the overlay network topology
on search efficiency. With DANTE we propose a self-adapting mechanism that
makes the network change its topology aiming always to an optimal configuration
that depends on the system load. This mechanism envisions the P2P system as
a community where, from the individual work of participants, a global behavior
emerges making the system able to adapt to changing conditions.

The first results obtained with this approach seem promising. However, much
work remains to be done in order to improve the efficiency of these techniques.
For example new heuristics can be developed that make the overlay network
topology to evolve more smoothly depending on the peer congestion, avoiding
sharp changes.

Acknowledgments

This work was partially supported by the Spanish Ministry of Science and Tech-
nology under Grant No. TSI2004-02940 and TIN2005-09198-C02-01, by Ban-
caixa under Grant No. P1-1B2003-37 and by the Comunidad de Madrid under
grant S-0505/TIC/0285.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36, 335–371 (2004)

2. Balakrishnan, H., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, I.: Looking
up data in P2P systems. Communications of the ACM 46, 43–48 (2003)

3. Gnutella.com: (The gnutella website), http://www.gnutella.com
4. Guimerà, R., Dı́az-Guilera, A., Vega-Redondo, F., Cabrales, A., Arenas, A.: Opti-

mal network topologies for local search with congestion. Physical Review Letters 89
(2002)

5. Cholvi, V., Laderas, V., López, L., Fernández, A.: Self-adapting network topologies
in congested scenarios. Physical Review E 71, 35–103 (2005)

6. Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks.
Physical Review Letters 85, 4629–4632 (2000)

7. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In:
INFOCOM (2004)

8. Newman, M.E.J.: A measure of betweenness centrality based on random walks.
Social Networks 27, 39–54 (2005)

9. Jelasity, M., Guerraoui, R., Kermarrec, A.M., van Steen, M.: The peer sampling
service: Experimental evaluation of unstructured gossip-based implementations.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer,
Heidelberg (2004)

10. Cooper, C., Frieze, A.: The cover time of sparse random graphs. In: Proceedings
of the fourteenth annual ACM-SIAM symposium on discrete algorithms, Society
for Industrial and Applied Mathematics, pp. 140–147 (2003)

42 L. Rodero Merino et al.

11. Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make Gnutella scalable? In:
Revised Papers from the First International Workshop on Peer-to-Peer Systems,
Cambridge, United States, pp. 94–103 (2002)

12. Chawathe, Y., Ratnasamy, S., Lanham, N., Shenker, S.: Making Gnutella-like P2P
systems scalable. In: Proceedings of the 2003 conference on applications, technolo-
gies, architectures, and protocols for computer communications (SIGCOMM 2003),
Karlsruhe, Germany, pp. 407–418 (2003)

The Exclusion of Malicious Routing Peers
in Structured P2P Systems

Bong-Soo Roh, O-Hoon Kwon, Sung Je Hong, and Jong Kim

Dept. of Computer Science and Engineering,
Pohang University of Science and Technology

{saintroh,dolphin,sjhong,jkim}@postech.ac.kr

Abstract. We propose a scheme which excludes malicious routing peers from
the normal routing process of structured P2P systems such as Chord. This scheme
prevents continuous routing overheads from malicious peers. Simulation results
show that the proposed scheme reduces the average routing length compared with
the routing algorithm only using the alternate lookup path.

1 Introduction

Structured peer-to-peer (P2P) systems such as Chord [1], CAN [2], and Pastry [3]
provide good characteristics such as load balance, decentralization, scalability and avail-
ability when their algorithms are executed correctly. The routing algorithms are espe-
cially important because the peers place and lookup data deterministically using robust
routing algorithms. Therefore, incorrect lookup routing is a serious problem in struc-
tured P2P systems. It means that malicious peers deliver query messages to incorrect
or non-existing nodes. Even a small number of malicious peers can prevent correct
message delivery and cause large overheads. Existing approaches for solving incorrect
lookup routing are based on the concept of secure message forwarding. It is to deliver
the message to good peers who are responsible with the query message in the presence
of malicious peers. For example, there are techniques such as the iterative routing [4],
the redundant routing [5] and the alternate lookup path [6]. However, even though these
techniques securely delivere messages at once, malicious peers can participate again in
the routing protocols. Therefore, lookups would continue to be routed to the malicious
peers, which would increase the routing overheads.

In this paper, we propose a scheme which excludes the malicious routing peers from
the normal routing process of structured P2P systems. This scheme prevents continu-
ous routing overheads from existing malicious nodes. The proposed scheme has four
characteristics. First, it is a fully distributed scheme to exclude malicious routing peers.
Second, it makes the system work well even in the high ratio of malicious peers in the
overlay. Third, it allows the arbitrary behavior of malicious routing peers. Fourth, it
uses the alternate lookup path [6] and the query observation [4].

The rest of this paper is organized as follows. In Section 2, related works and their
differences with our work are discussed. In Section 3 and 4, the adversary model and the
characteristics of the proposed system are described. Section 5 describes the exclusion
routing protocol. Section 6 shows the simulation results. Finally, we summarize this
paper and discuss concluding remarks in Section 7.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 43–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 B.-S. Roh et al.

2 Related Works

In this section, we briefly discuss the previous works which deal with incorrect lookup
routing in structured P2P systems.

Sit and Morris [4] proposed the iterative routing using a query observation to defend
against incorrect lookup routing. At each hop, the querier checks if the lookup gets
closer to the key identifier. If an incorrect lookup is detected, the querier might recover
by backtracking to the last good hop and asking for an alternative step that offers less
progress. However, they had no experimental data to prove their claim. Castro et al. [5]
proposed redundant routing using a routing failure test for secure routing in structured
P2P Systems. The redundant routing technique is invoked when the failure test returns
positive. The idea is simply to route copies of the message over multiple routes towards
each of the destination key’s replica roots. Their techniques allow P2P systems to tol-
erate up to 25% malicious nodes while providing good performance when the fraction
of malicious nodes is small. Srivatsa and Liu [6] emphasized the importance of mul-
tiple alternate lookup paths for secure routing in structured P2P Systems. If the query
originator detects an incorrect lookup using the query observation [4], it can choose an
alternative (possibly sub-optimal) lookup path towards the destination identifier. Even
though the above techniques can support secure message forwarding, malicious peers
can continuously cause routing errors and routing overheads. Therefore, we will pro-
pose a scheme which excludes malicious routing peers from the normal routing process.

3 Adversary Model

In this paper, adversaries refer to those peers, which do not follow the routing protocol
of the system and mislead good peers by providing them with incorrect routing infor-
mation or no response.

We assume that most of peers can be malicious nodes in the overlay. In the worst
case, almost all of the routing entries will be incorrect paths. As a result, the rout-
ing overheads such as the lookup failure, path re-computation and network bandwidth
wastage can be increased, but the routing operation will work correctly. Generally, a
malicious node behavior is assumed to be consistent. But, we assume that malicious
nodes can perform arbitrary behaviors. We consider that malicious nodes may inten-
tionally upgrade their trustworthiness by performing normal routing from time to time.
However, if their behavior is accumulated, their trustworthiness will be evaluated ac-
cordingly.

We also assume that the malicious nodes cannot collude. Since general P2P architec-
tures guarantee anonymity, the collusion attack by malicious nodes is a very complex
problem. Although many research groups have worked on this problem, a complete
solution has not been proposed. This problem is related to the authentication for P2P
nodes. We assume that the underlying network layer is secure. That is, an adversary
node can only access the packets that have been addressed to it. If the packet is not en-
crypted, the malicious node may modify it. Also, the domain name service, the network
routers, and the related networking infrastructure are completely secure. Therefore, we
assume that these infrastructures cannot be compromised by malicious nodes.

The Exclusion of Malicious Routing Peers in Structured P2P Systems 45

4 Characteristics of the System

In this section, we describe the characteristics of the system extended from general
structure P2P systems in order to support the proposed exclusion scheme. The pro-
posed scheme can be applied to all DHT-based P2P systems, but we will explain it for
Chord [1].

4.1 Extended Routing Table

In structured P2P systems, each node uses the per-node routing tables for routing the
query message. The routing table consists of references to other neighbors. In Chord [1],
it is called the finger table. The k-th finger node is the first node that succeeds the current
node by at least 2k−1, where 1 ≤ k ≤ m and the identifier is a m-bit number. The finger
table is used for efficient routing. In order to exclude malicious routing peers from the
finger table, we add one column to each row. The column represents the ratio of how
much incorrect routing the corresponding neighbor had done. The column is called the
TCR (Total Claim Ratio). In our system, every peer forwards the query message to a
peer with the minimum TCR value.

4.2 TCR(Total Claim Ratio)

The claim ratio (CR) is a ratio of the claim count (CC) to the forwarding count (FC). FC
increases when the query is forwarded to each routing entry. CC increases when a peer
receives the claim. Periodically, CR is reseted at every time interval of TCR. By doing
so, the system is not influenced by unintentional routing failures such as malicious
claims or short-term path errors.

The total claim ratio (TCR) reflects the node’s historic behavior. The proposed
scheme assumes that malicious peers can fabricate their CR. For example, if malicious
nodes have normal behaviors in many routing steps initially, their FC increases enough
for malicious behaviors to have no effect on their CR later on. Therefore, recent mali-
cious behavior has a stronger influence on TCR that the old behaviors.

TCR =
n∑

k=1

αn ∗ CR = α1 ∗ CR1 + . . . + αn ∗ CRn (1)

where α1 + α2 + . . . + αn = 1 and αn > αn−1 > · · · > α2 > α1. CRn is the most
recent CR and CR1 is the oldest CR, where n is the number of time interval.

4.3 Query Observation and Alternate Lookup Path

In the proposed scheme, the query originator checks if the lookup is correct by using the
query observation [4] at each hop. Thus, each step of query process must be visible to
the querier. In our system, the receivers of the query report the identifier of the current
node and the identifier of the next node to the query originator at each hop. Using this
information, the query originator can check for incorrect routing because the lookup

46 B.-S. Roh et al.

is always supposed to get closer to the key identifier in the clockwise motion. There-
fore, if an incorrect lookup is detected, the query originator can recover the lookup by
backtracking to the last good hop for another path.

Upon detecting an incorrect routing by using the query observation, the query orig-
inator asks the previous good node along the lookup path for an alternate lookup path
toward the destination identifier [6]. Due to the characteristics of the finger table in
Chord [1], it is likely that the alternate lookup path proceeds only by half the distance
along the identifier circle compared to the original path.

5 The Exclusion Routing Protocol

In this section, we describe the exclusion routing protocol against malicious routing
peers. The exclusion routing protocol consists of the claim process and the verification
process.

5.1 Claim Process

A misrouting node (MRN) is a node which misroutes a message intentionally or un-
intentionally. A previous good node (PGN) is a good node which delivers a message
to a MRN. If the query originator detects an incorrect lookup routing, it gives a notice
to MRNs and PGNs, which is called a claim. The purpose of this process is to leave
the history table on the neighbors’ routing trustworthiness as a column of the extended
routing table. The claim includes the following information.

– the identifier and the IP address of the querier
– the identifier of a target node for the claim
– the destination key identifier

The claim process is as follows.

1. When the querier receives a wrong routing result, the querier gives a claim message
to MRN and PGN, respectively.

2. PGN delivers the query through the minimal TCR path.
3. Using the verification process, PGN verifies if the claim is correct or not.
4. If the claim is correct, the receivers of the claim reflect the TCR value.
5. If MRN is a good node, MRN also does the steps 3) and 4).

As a result of the above claim process, nodes with the higher TCR value are excluded
in each node’s routing entries. Each node always forwards the query to the minimal
TCR node among available paths. If more than two TCR values are the same, a PGN
forwards the query to the neighbor which is closer to the key identifier. If a node with
the minimal TCR value is malicious, a PGN forwards the query to the next minimal
TCR node.

Fig. 1 is an example of the claim process. We assumed that N8 is the querier and
N51 is the malicious node. N8 learns its query trace by using the query observation.

The Exclusion of Malicious Routing Peers in Structured P2P Systems 47

Fig. 1. An Example for the Claim Process

Pseudo Code of ALPbasic(query result)
if (query result is false) {
while !(query result is correct) {

current node = PN;

Decrease finger table index by 1;

Send a query using current node[finger table index];

}

Fig. 2. The Algorithm of Alternate Lookup Path

If N51 incorrectly routes to N1, N8 detects the malicious node (N51) using the query
observation. Then, N8 sends the claim to N42 (PGN) and N51 (MRN). N42 verifies
a claim message using the verification process. If the claim message is verified to be
correct, N42 reflects a TCR value for N51 (MRN).

This algorithm is based on the query observation. The observation of queries can
inform the querier on where the message is currently arriving from. Using this mech-
anism, the querier can go back to the last good node. Then, the querier selects the
sub-optimal path within the routing entries. However, this algorithm has a problem. It
has not considered another querier who will pass by this location. Therefore, many of
them go through the same situation.

Fig. 2 shows the pseudo code of the alternate lookup path (ALP). Fig. 3 shows the
pseudo code of finding an alternate lookup path using TCR values. These algorithms
are based on the query observation [6]. Unlike the alternate lookup path, the proposed
algorithm checks a routing history column to determine the routing path. Using this
accumulated data, every P2P node forwards the query message to a minimum TCR
node. This procedure means that all of the P2P nodes exclude the higher TCR nodes
from the normal routing process.

48 B.-S. Roh et al.

Pseudo Code of ALPTCR(query result)
if (query result is false) {
while !(query result is correct) {
MRN = current node;

current node = PGN;

Decrease finger table index

by next minimum TCR entry;

if (next minimum TCR entry does not exist)

Increase finger table index;

Send a query;

if (predecessor of key is malicious)

Send a query using replica;

verification process(faulty node,key value);

if (verification process is correct)

Increase TCR of faulty node;

}

Fig. 3. Algorithm for finding an Alternate Lookup Path Using TCR values

5.2 Verification Process

Since the query originator can also be malicious, the receivers of the claim need to
verify the claim before reflecting it to their TCR column. If PGN receives the claim,
they send the same query to a MRN using the identifier of the target and the destination
key identifier. Then, if PGN receives the same claim from the querier, it updates its TCR
column. Since malicious nodes do not know whether the query is the PGN’s message
or not, it is impossible for MRN to selectively perform different routings.

5.3 Replication

In Chord [1], all lookup queries for a key pass only through the predecessor of the re-
sponsible node for the key. If the predecessor node is malicious, all lookups for the key
will always fail. Therefore, all data should be replicated on several nodes. There are
some research works on replication schemes [7,8]. They used neighbors of the respon-
sible peer as the replication nodes. In our case, when there are 2r replication nodes for a
key k in m-bit identifier space, the data are replicated on the successors of the following
keys: {(k + 2m−r), (k + 2m−(r−1)), · · ·, (k + 2m−2), (k + 2m−1)} (mod 2m).

If the query receiver finds the responsible node in the routing entry but the query
cannot be forwarded to the node, the query originator forwards the query towards the
next responsible node of the replication group.

6 Simulation Results

We have performed experiments to show that the proposed scheme reduce the average
routing length even when the rate of malicious nodes is high. We simulated the alternate

The Exclusion of Malicious Routing Peers in Structured P2P Systems 49

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
ou

tin
g

Le
ng

th
(H

op
s)

Percentage of Malicious Nodes (%)

alternate lookup path
alternate lookup path with TCR

Fig. 4. Alternate Lookup Path Vs. TCR (B=5, Q=1000)

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 R
ou

tin
g

Le
ng

th
(H

op
s)

Percentage of Malicious Nodes (%)

alternate lookup path
alternate lookup path using TCR

Fig. 5. Alternate Lookup Path Vs TCR (B=5, Q=1000000)

lookup path and the proposed scheme on a Chord system with 1024 nodes. The iden-
tifier of the nodes is 0 to 1023. The average routing length is 4 hop when there are no
malicious nodes. The location of malicious nodes and the query originator is randomly
selected.

Malicious nodes mislead good nodes to false successors. Therefore, if good nodes go
through malicious nodes, the average routing length increases because they should find
an alternate lookup path. When the querier can find the responsible node for a desired
key in the routing entry, the routing successfully ends, while other cases are failures.
Also, for a simple adversary model, we assumed that α = 1 and n = 1.

If a ratio of malicious nodes increases, the number of nodes with false routing in-
formation in their routing table also increases. If all nodes in the routing entries are
malicious, the querier cannot forward the query properly. To solve this problem, our
system backtracks to a PGN and restarts the routing. Naturally, the average routing
length increases, but the lookup failure rate decreases.

50 B.-S. Roh et al.

Fig. 4 shows the average routing length with backtracking, where the number of
backtracking(B) is 5 and the number of queries(Q) is 1000. We can observe that the
average routing length is doubled. The more the ratio of malicious nodes increases,
the more the count of backtracking increases. Thus, the average routing length in the
backtracking protocol is longer than that in the non-backtracking protocol. This result
shows that our scheme reduces the average routing length even more by backtracking.

Fig. 5 shows the average routing length with backtracking, where the number of
backtracking(B) is 5 and the number of queries(Q) is 1000000. This result shows that
our scheme is more effective when the number of queries is large.

7 Conclusion

In this paper, we proposed a scheme which excludes malicious routing peers using TCR
in a structured P2P system. Because our scheme excludes malicious nodes, the inter-
mediate nodes along the routing path do not select a false routing path. The simulation
results showed that the proposed scheme reduces the average routing length compared
to the secure routing scheme which only uses the alternate lookup path.

Acknowledgments

This research was supported by the MIC(Ministry of Information and Communica-
tion), Korea, under the Chung-Ang University HNRC-ITRC(Home Network Research
Center) support program supervised by the IITA(Institute of Information Technology
Assessment).

References

1. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-
nan, H.: Chord: A scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking (February 2003)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R.: A scalable content addressable network. In:
Proceedings of ACM SIGCOMM 2001 Techinical Conference (August 2001)

3. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: Proceedings of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (November 2001)

4. Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash tables. In: Dr-
uschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, Springer, Hei-
delberg (2002)

5. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for struc-
tured peer-to-peer overlay networks. In: Proceedings of the 5th Usenix Symposium on Oper-
ating Systems Design and Implementation (OSDI) (December 2002)

6. Srivatsa, M., Liu, L.: Vulnerabilities and security threats in structured overlay networks: A
quantitative analysis. In: Proceedings of the 20th Annual Computer Security Applications
Conference (ACSAC) (December 2004)

7. Maymounkov, Kademlia: A peer to peer inforamtion system based on the xor metric. In:
Proceeding of 1st International Workshop on Peer-to-Peer Systems (March 2002)

8. Ratnasamy, Fancis: A scalable content addressable network. In: Proceeding of the ACM 2001
SIGCOMM Conference (August 2001)

Cooperative CBR System for Peer Agent

Committee Formation

Hager Karoui, Rushed Kanawati, and Laure Petrucci

LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément

F-93430 Villetaneuse, France
{hager.karoui,rushed.kanawati,laure.petrucci}@lipn.univ-paris13.fr

Abstract. This paper deals with the problem of peer agent selection in
an unstructured P2P recommendation system. The problem is studied
in the context of a collaborative P2P bibliographical data management
and recommendation system. In this system, each user is assisted with a
personal software agent that helps her/him in managing bibliographical
data and recommending new bibliographical references that are known
by peer agents. One key issue is to define the set of peer agents that can
provide the most relevant recommendations. Here, we treat this problem
by using CBR methodology. We aim at enhancing the system overall
performances by reducing network load (i.e. number of contacted peers,
avoiding redundancy) and enhancing the relevance of computed recom-
mendations by reducing the number of noisy recommendations. The peer
selection learning cycle is described in detail. Experimental results are
also provided and discussed.

1 Introduction

In [7], we have proposed a peer-to-peer (P2P hereafter) collaborative system for
bibliographical references management and recommendation. The system, called
COBRAS (standing for COoperative Bibliography Recommendation Agent Sys-
tem) aims at: providing help for users to manage their local bibliographical
databases and to allow exchanging bibliographical data among like-minded group
of users in an implicit (i.e. without user request) and intelligent (i.e. exchang-
ing relevant data) way. Each user is associated with a personal software agent
helping her/him at filling bibliographical records, verifying the correctness of the
information entered and more importantly, recommending the user with relevant
bibliographical references.

In order to compute relevant recommendations, personal agents collaborate
one with each other. A key issue is to define the set of peer agents that can provide
the most relevant recommendations. One simple strategy can be to request help
from all available agents. However, such a strategy can be expensive or slow if the
set of available agents is large, and it is not obvious that it gives the best results
in all situations [8]. In this paper, we propose a case-based reasoning (CBR)
system for committee recommendation. CBR is a problem solving methodology

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 51–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 H. Karoui, R. Kanawati, and L. Petrucci

[3]. A new problem is solved by finding a similar previous case, and reusing it in
the new problem situation. An important feature is that CBR is an approach to
incremental, sustained learning since a new experience is retained each time a
problem has been solved, making it immediately available for future problems.
Our idea is to have a set of interesting peer agents with which the initiator agent
will collaborate in a given context. In this system, the initiator agent applies a
CBR cycle in order to form a committee. A committee is a set of peer agents
supposed to be interesting for a given interest topic. The committee formation is
computed when the initiator agent detects some hot topics of the associated user.
For each detected topic, the agent searchs in his interaction history with other
agents in order to choose a subset of peers that are likely to provide relevant
references . A CBR-based approach is used for this purpose.

The structure of the paper is as follows. First, we give a global peer-to-peer
system overview in section 2. Then, we focus on the committee formation policy
in section 3. We give some experimentations in section 4. In section 5, we discuss
related work. In section 6, we conclude and we give some directions for future
work.

2 System Overview

In COBRAS system, each user is assisted by a personal agent that helps in
managing her/his own bibliographical database. Different services are provided
by the local assistant such as references edition, references correctness verifica-
tion and recommendation. We focus on this later service which aims at sharing
bibliographic knowledge among the users and taking advantage of past experi-
ences of a single user or even a group of users for recommending more relevant
references [7]. Each reference is described by a record containing the following
information:

– Bibliographical data: these are the classical data describing a reference such
as the type (e.g. Article, In Proceedings, etc), authors, title, etc.

– Keywords: this is a list of keywords describing the reference. The keywords
are defined by the user.

– Topics: this is a list of topics the reference is related to. The same topic
hierarchy is shared by all users. It has a tree structure and is based on the
ACM hierarchy [1] related to the Computer Science domain.

The personal assistant suggests various and interesting recommendations to the
associated user according to her/his current activity. The user can either accept
or refuse the proposed recommendations. The recommendation computation is
made as follows:

– First, the agent applies a simple algorithm described in [7], in order to de-
termine topics from the structure hierarchy that are of current interest to
the user. The degree of interest is function of the user activity (i.e. her/his
actions on the database).

Cooperative CBR System for Peer Agent Committee Formation 53

– For each found topic, the agent sends a recommendation request to a com-
mittee of peers. A committee is a set of peer agents that are likely to have
references related to the current interesting topic. A recommendation request
message is given by: R = 〈A, T, KL〉 where:

• A is the sender agent identifier,
• T is a target topic,
• KL is a list of keywords that is computed from the set of keywords

lists describing references related, directly or indirectly to the topic T .
A reference is indirectly related to a topic T if it is related to a topic T ′

more specific than T . In this paper, we focus on this functionnality: the com-
mittee formation approach.

– Upon receiving a recommendation request, each agent computes a list of
references to recommend.

– The agent merges the received results and proposes the best references to
its associated user [7].

3 Committee Formation

The goal of the committee is to enhance the system overall performances by
reducing network load and to enhance the relevance of computed recommenda-
tions by reducing the number of noisy recommendations. The goal consists also
to take advantage of the knowledge and experience of other peers. We propose
to use a CBR approach in order to exploit history interaction of each agent with
others and to learn to find an appropriate committee for each request type. The
CBR uses a case base containing relevant evaluated cases. Generally, a case is
composed of two parts: the problem part and the solution part (Case = (Prob-
lem, Solution)). A target problem is a problem to which we search for a solution.
It involves a type of recommendation request (in our case, it is the current in-
teresting topic), which presents a part of the user’s interests. A case has the
following structure: Case = (T , C) where:

– Problem = T is a current interesting topic,
– Solution = C is a committee composed of recommended agent to contact

according to the topic T .

A CBR cycle is computed for each recommendation request. We describe here
the different phases of the CBR cycle for committee formation.

The search phase. Receiving a target problem (a topic T of the computed
interesting topic list), the agent selects cases that are similar to the target prob-
lem. The committee search is based on a topic similarity which compares the
target problem to cases stored in the agent’s case base. If the similarity value is
above a given threshold σt, then the case will be recalled. At the beginning, since
the committee case base is empty, the initiator agent sends the recommendation
request to all available agents. The topic similarity function is as follows:

SimTopics(T1, T2)=1 − path(T1, MSCA(T1, T2))+path(T2, MSCA(T1, T2))
path(T1, root)+path(T2, root)

(1)

54 H. Karoui, R. Kanawati, and L. Petrucci

where:

– path(a, b) returns the path length between nodes a and b,
– root is the topic’s tree root,
– MSCA(a, b) returns the most specific common ancestor of nodes a and b in

the topic tree.

The same topic map is used by all users. However, we stress that the same hier-
archy will be used differently by different users. That’s to say the same reference
can be related to different topics by different users. For example one may index
all CBR-related papers to the same topic, let’s say CBR, while another user may
index the same papers differently: some related to memory organization in CBR
systems and others for CBR case maintenance. A third may index the same
references as all related to lazy learning. The topic similarity measure uses the
topics underlying hierarchical structure. The applied heuristic is the following:
the similarity between two topics depends on the length of the path that links
the two topics and on the depth of the topics in the hierarchy. Moreover, a match
with specific nodes closer to leaf nodes results in a higher similarity than nodes
matching at higher levels of the tree. The heuristic is to return the most specific
topics which concentrate a given level of the user’s focus.

Reuse Phase. This phase aims at finding a solution to the target problem
from a set of source cases found in the previous phase. The solution presents an
interesting peer agents committee, to which the recommendation request will be
forwarded. The solution committee contains a set of agents computed from the
different committees of the source cases found on the previous phase. The target
case = (T , C), is such that: T is the initial topic, C = ∪Ci, where Ci is the
solution of the source case i. The recommendation request will be broadcasted
to all peer agents composing the committee C.

Revision Phase. The computed solution is then evaluated by the initiator
agent according to the user’s evaluation of the recommended references. If the
user is interested by a set of recommended references (e.g. the user adds some
references to her/his local base). Then, their associated cases and agents will be
well evaluated.

Learning Phase. This step consists of adding new cases to the local agent
case base. It is the most important step in the CBR cycle. In fact, the selection
of retained agents for futur similar problems is done at this stage. As we have
explained before, the peer selection is done in a manner to reduce committee size
while preserving result quality. The elaboration of a case must be accurate in
order to store the relevant information. This phase is based on the agent addition
strategy, i.e. the criteria used in order to decide if a given responding agent will
be added to the new formed committee or not. A natural idea is to choose all
agents which propose some relevant references. Although this simple strategy
gives encouraging preliminary results, it does not optimize the committee size.
In order to reduce the number of contacted agents, we define criteria which

Cooperative CBR System for Peer Agent Committee Formation 55

evaluate each agent contribution within the selected committee. We define two
criteria-based strategies: heuristics 1 and heuristics 2.

1. Heuristics 1: consists of retaining only agents with a local recall value
greater than or equal to the average recall value of the references recommend-
ing agents. The recall represents the rate of good recommended references
among the good existing references (Recall = Good recommended references

Good references).
Good references are references that are well evaluated by the user. The local
recall presents the recall of each agent.

2. Heuristics 2: consists of retaining only agents with a local precision value
greater than or equal to the average precision value of the recommended
references. The precision represents the rate of good recommended references
among all the recommended ones (Precision = Good recommended references

All recommended references).
The local precision is the precision of each agent.

4 Experimentation

Experiment settings: n agents which have the same references but they are dis-
tributed differently and randomly among the topics of the topic tree. We fix a
hot topic, which is considered as a query and we apply our strategy in order to
find appropriate agents. We vary each time the number of interesting agents in
the system and we compute the recall and the precision. We propose interesting
agent term which means agent having good references. In this experiment, we
produce the interesting agent as agent having at least x% of the references as-
sociated to the current interesting topic. To evaluate our committee formation
strategy, we considered three evaluation criteria (recall, precision and committee
size). These criteria are of two types :

– Quality criteria: presented by the recall and the precision measures (de-
scribed in 3).

– Performance criteria: presented in this experiment by the committee size.

The simulation is performed with three different settings:

– All : we use a naive approach where the recommendation request is broad-
casted to all available agents.

– Random: we apply a simple peer selection algorithm, which randomly selects
m agents knowing that m corresponds to the number of interesting agents
at each time (m varies from 1 to n).

– Committee: we apply the CBR-based selection natural approach as described
in section 3.

In our experiments, we fixed the number of agent to 10, the used topic sim-
ilarity threshold σt has the value of 0.7. We suppose that an interesting agent
is an agent disposing of at least 70% of the reference set associated with the
hot topic. A single simulation consists of fixing the minimum number of good
references for the interesting agents. Interesting agents do not necessarily have

56 H. Karoui, R. Kanawati, and L. Petrucci

Fig. 1. Recall variation Fig. 2. Precision variation

the same set of good references. The set is chosen randomly. The other references
are dispersed among the other topics in a random manner.

Figure 1 shows the recall variation according to the number of interesting
agents. We notice that the recall for the committee strategy is very close to the
all strategy and clearly better than the random strategy. The recall is often
improved by the increase of the number of interesting agents when we randomly
choose the agents.

The precision variation is described in figure 2 for the three settings. The all
and committee strategies present more or less similar results, which are better
than the naive approach based on random peer selection. However, the precision
value is fairly weak with an average of 0.364.

Then, in order to evaluate the performance of the system using the proposed
committee formation strategy, figure 3 shows the number of contacted agents
among these ten available agents. We notice that the number of contacted agents
is reduced. For example in the case of one interesting agent, we solicit 5 agents
instead of 10, for 5 and 7 interesting agents, we solicit 8 agents.

Finally, we can say that our natural committee strategy improves the system
performance by reducing the number of contacted agents, while it gives sim-
ilar quality results (i.e. recall and precision) as when all available agents are
contacted. However, these results are not satisfactory because we do not want
to solicit non interesting agents (without good references), or those which are
interesting, but propose the same references as the other agents. In order to
improve the results obtained, we studied the effect of applying Heuristics 1 and
Heuristics 2 for agents selection (see 3). The results are described in figures 4, 5

Cooperative CBR System for Peer Agent Committee Formation 57

Fig. 3. Committee Size Fig. 4. Committee size variation

Fig. 5. Recall variation Fig. 6. Precision variation

and 6. Figure 4 shows a clear improvement of the system performance since for
both cases (i.e. heuristics 1 and 2), the system solicits at worst all interesting
agents. The system contacts even less agents when there is a quite important
number of interesting agents. For example, for 6 and 7 interesting agents, the
system contacts 6 and 7 agents according to heuristics 1 and respectively 5 and
5 agents according to heuristics 2, compared to 9 and 8 agents for the simple

58 H. Karoui, R. Kanawati, and L. Petrucci

committee strategy (i.e. agent having at least one good reference). The same
holds for the 9 and 10 interesting agents, the system solicits respectively 7 and
3 agents according to heuristics 1 and respectively 6 and 4 agents according to
heuristics 2, compared to 10 and 10 agents for the simple committee strategy.
Heuristics 2 gives, in general, better results than heuristics 1 mainly when there
is a quite important number of agents. For example, in the 7 interesting agents
case, heuristics 2 retains 5 agents while heuristics 1 retains 7 agents. We con-
clude that the application of such heuristics gives better system performances.
We now examine its impact on the quality criteria (i.e. recall and precision).

Figures 5 and 6 show that the application of the two heuristics gives a recall
value similar to the case of contacting all available agents or all agents composing
the committee. We also note an improvement of the system precision since we
solicit all agents proposing an acceptable contribution (in terms of recall and
precision). For example, the precision is improved in the 1, 5, 6 and 9 interesting
agents cases. The two heuristics based methods present identical results at the
begining, i.e. when the number of interesting agents is lower than 6, and similar
results for the other cases. These results show that, even when applying simple
heuristics, we succeed in reducing the number of agents to solicit while we keep
a very similar result quality, and moreover, we notice an improvement of the
precision criterion.

In our experiments, we supposed that an interesting agent is an agent dispos-
ing of at least x% of the reference set associated with the hot topic. We varied
the x and we studied its effect on the committee formation evaluation criteria.
The experimental results are described in figures 7, 8 and 9. These results are
obtained by adding heuristics 2 to the simple committee formation strategy. We
note that, for the different values of x, the curves have the same trend. We remark

Fig. 7. Committee size variation

Cooperative CBR System for Peer Agent Committee Formation 59

Fig. 8. Recall variation Fig. 9. Precision variation

also that, in all cases, the number of retained agents is reduced while maintain-
ing similar result quality (i.e. recall and precision) or even an improvement.
Although the results obtained are acceptable and encouraging, we think that
the results (mainly the precision which is quite low) presented will be improved
by introducing some constraints in the committee formation process such as:

– using better reference similarity taking into account semantic criteria (e.g.
same authors, same conference, etc). This will improve the quality of recom-
mendation and the precision of the system.

– handling the redundancy problem between agents results. In many cases,
some of the references proposed by interesting agents are the same. So it is
useful to verify this before contacting all possibly interesting agents.

– proposing an appropriate cooperative approach to up to date committee ac-
cording to the changing user’s interests in a dynamic network. This constitues
our present work.

5 Related Work

Different committee formation approaches are proposed in the literature. Some
are based on the notion of agent reputation [5] or agent expertise [4]. Others
propose to apply automatic learning techniques in order to enable each agent
to determine if it needs to increase the committee of peers and, if it is the case,
which peer agent to invite [8]. For our purposes, the idea consists of providing
each peer agent with the capacity of selecting a subset of peer agents having

60 H. Karoui, R. Kanawati, and L. Petrucci

good results according to a given recommendation request type (in our case,
the recommendation of bibliographical references). The goal is to improve the
performance of the whole system by reducing the network and the agents charge.

– Bibster system (standing for Semantic-Based Bibliographic Peer-to-Peer
System)[4], has a peer-to-peer architecture and aims at sharing bibliographic
data between researchers. The peer selection is based on the expertise notion
[6]. The expertise is a set of ACM topics. All system peers share a common
ontology for publishing semantic descriptions of their expertise in a peer-
to-peer network. This knowledge about the other peers expertise forms the
semantic topology, which is independent of the underlying network topology.
When a peer receives a request, it decides to forward the query to peers whose
expertise is similar to the subject of the query. Peers decide autonomously
to whom advertisements should be sent and which advertisements to accept.
This decision is based on the semantic similarity between expertise descrip-
tions. This strategy gives good results compared to broadcasting the query
to all or to a random set of peers but does not exploit past experience to
learn and improve the formed semantic topology.

– Gupta et. al. [5] propose a reputation system for decentralized unstructured
P2P networks like Gnutella [2] for searching and information sharing. The
peer selection strategy is based on the agent reputation notion. The reputa-
tion system uses objective criteria to track each peer’s contribution in the
system and allows peers to store their reputations locally. They propose two
alternate computation mechanisms for a reputation system that objectively
map each peer’s activity in the P2P network to a dynamically updated rep-
utation score. The two mechanisms are the debit-credit reputation compu-
tation (DCRC) and the credit-only reputation computation (CORC). The
first mechanism (DCRC), credits peer reputation scores for serving content
and debits for downloading. The second one (CORC), credits peer reputa-
tion scores for serving content but offers no debits. The expiration on the
scores instead serves as a debit. A reputation score is intended to give a
general idea of the peer’s level of participation in the system. Reputation
scores are based on two essential factors: the peer capability and its behav-
ior. The capability of a peer depends on its processing capacity, memory,
storage capacity, and bandwith. The behavior of a peer is determined by the
level of contribution offered by it for the common good of the P2P network.
Peers are free to enroll in the reputation computation or not. A reputation
computation agent (RCA) is used for enrolling peers who wish to enroll
in reputation computations and for updating peer reputations in a secure,
light-weight, and partially distributed manner. Having reliable reputation
information about peers can form the basis of an incentive system and can
guide peers in taking decisions.

– Ontañón and Plaza [8] propose another strategy of selection of the agents
that join a committee for solving a problem in the classification tasks. The
basic reason of the incentive of agents to cooperate in the form of a commit-
tee is that they can improve their performmance in solving problems. The

Cooperative CBR System for Peer Agent Committee Formation 61

committee organization improves (in general) the classification accuracy with
respect to individual agents. It is a learning framework that unifies both the
when and the who issues. In fact, the agent learns to assess the likelihood
that the current committee will provide a correct solution. If the likelihood
is not high, the agent has to invite a new agent and has to decide which
agent to invite. The agent learns to form a committee in a dynamic way
and to take decisions such as whether it is better to invite a new member to
join a committee, when to individually solve a problem, when it is better to
convene a committee.

We have chosen to propose a new strategy of committee formation which will be
dynamic, extensible and adaptable. The proposed strategy exploits as much as
possible past experiences and will be adaptable with the new real constraints.
To ensure this, our strategy relies on a case-based reasoning system. It aims
at computing committee’s recommendations. In fact, when an agent detects
a hot topic, it applies a CBR cycle to find some committee recommendation
associated with the request type. The reference recommendation request will
then be forwarded to peer agents composing the recommended committee.

6 Conclusion

We have presented a cooperative CBR approach for peer committee recommen-
dation in a bibliographical references recommendation system COBRAS. The
agents cooperate with each other in order to share their knowledge and their
past experience to improve their efficiency.

We proposed a strategy allowing an agent to determine peer agents committee
for a given recommendation request. This strategy uses a CBR technique in a
cooperative way allowing for reusing and sharing of knowledge and experience.

The results obtained are encouraging. Different tracks however should be ex-
plored in order to improve both the quality and the performance criteria: han-
dling the problem of agent redundancy in a commitee; proposing a strategy to
maintain the agent case base and ensuring up-to-dated committee according to
user’s interest changing. These perspectives are the subject of our present work.

References

1. Acm, http://www.acm.org/
2. Gnutella, http://gnutella.wego.com/
3. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications 7(1), 39–59 (1994)
4. Broekstra, J., Ehrig, M., Haase, P., Harmelen, F., Menken, M., Mika, P., Schnizler,

B., Siebes, R.: Bibster -a semantics-based bibliographic peer-to-peer system. In:
Proceedings of SemPGRID 2004, 2nd Workshop on Semantics in Peer-to-Peer and
Grid Computing, New York, USA, May 2004, pp. 3–22 (2004)

5. Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks.
In: Proceedings of ACM Networks and Operating System Support for Digital And
Video NOSSDAV 2003, Monterey, CA (2003)

http://www.acm.org/
http://gnutella.wego.com/

62 H. Karoui, R. Kanawati, and L. Petrucci

6. Haase, P., Siebes, R., Harmelen, F.: Peer selection in peer-to-peer networks with se-
mantic topologies. In: International Conference on Semantics of a Networked World:
Semantics for Grid Databases, Paris (2004)

7. Karoui, H.: Agent RàPC pour la gestion coopérative de bases bibliographiques per-
sonnelles. In: Plate-forme AFIA 2005, 13 ème atelier de Raisonnement à Partir de
Cas, Nice, France (May 2005)

8. Ontanón, S., Plaza, E.: Learning to form dynamic committees. In: Proceedings of
the second International joint Conference on Autonomous Agents and Multiagent
Systems, Melbourne, Australia, pp. 504–511. ACM Press, New York, USA (2003)

Mobile Agent-Based Approach for Resource

Discovery in Peer-to-Peer Networks

Jaafar Gaber and Mohamed Bakhouya

Universite de Technologie de Belfort-Montbeliard
Laboratoire SeT

90010 Belfort cedex, France
{gaber,bakhouya}@utbm.fr

Abstract. Peer-to-peer networks are distributed computing infrastruc-
tures that can provide globally available network resources. Their size
and complexity continue to increase and permit an almost ubiquitous
availability of resources. Therefore, new discovery approaches are re-
quired and need to be highly flexible in order to cope with a dynamically
changing environment. In this paper, a distributed agent-based approach
for resource discovery in peer-to-peer network is proposed. This approach
is based on the mobile agent paradigm and uses random walks to al-
low dynamic and adaptive resource discovery. We analyze this approach
through three distributed resource discovery scenarios by NS2 simulator.

1 Introduction

Resource discovery is an important issue in peer-to-peer network; given a user
request, a resource discovery mechanism should locate and return a set of peer
addresses that match the description of the requested resources. Resources can
be divided into two basic categories [1], [2]: system resources and application
resources. System resources are bound to specific hosts, representing hardware
devises (e.g. disk) or logical system objects. Application resources are software
entities managed by an application. In this paper, a service is considered to
be composed by a set of resources that users need to discover and select [3],
[4], [5]. These resources could be interfaced by web services. Web services are
applications that permit to describe software components; in particular they
define identification and accessing methods that enable the discovery and the
use of these components (i.e., the resources). For example, for a punctual need,
a user peer who would like to open video files or create video CD might need the
following resources: a video player, format transcoding software, the MPEG-4
codec (for his wireless laptop), video effect or edge detection algorithms, etc.

In peer-to-peer networks, centralized discovery architecture cannot meet the
requirements of both scalability and adaptability simultaneously. Issues are that
network resource discovery systems must be able to scale and able to adapt to
dynamic conditions in the network.

In this paper, we will use both random walks and a cloning mobile agent-based
approach for resource discovery in unstructured peer-to-peer networks. The rest

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 63–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 J. Gaber and M. Bakhouya

of the paper is organized as follows. Section 2 presents the related work. In
section 3, the proposed approach is presented. Section 4 presents the simulation
results. Conclusion is given in section 5.

2 Related Work

Resource discovery systems proposed in the literature can be classified into three
categories as depicted in figure 1: structured systems, unstructured systems and
self-organization systems [4], [6]. Structured systems can be classified also into
indexation-based architectures and hashing-based architectures. In indexation-
based architectures, there are two subcategories: centralized and decentralized
systems. In centralized indexation-based systems, typical resource discovery ar-
chitectures consists of three entities: resource providers that create and publish
resources, resource brokers that maintain repositories of published resources to
support their discovery, and resources requesters that search in the resource bro-
ker’s repositories. Centralized approaches, such as Napster [7], scale poorly and
have a single point of failure. To overcome the scalability problem, decentralized
approaches adopt traditionally a hierarchical architecture consisting of multiple
repositories that synchronize periodically [1], [8], [9]. In a large-scale P2P net-
work, hierarchical architecture cannot meet the requirements of both scalability
and adaptability simultaneously. More precisely, the way in which they have
typically been constructed is often very inflexible due to the risk of bottlenecks
and the difficulty of repositories updating [1], [10], [11]. Also, peer-to-peer net-
work is a dynamic environment where the location and availability of resources
are constantly changing; some resources could be disconnected from the network
and new ones may join it at any time.

Therefore, a resource discovery system should be decentralized to avoid bottle-
necks and guarantee scalability and adaptability. Most of structured systems that
implement non hierarchical and decentralized infrastructures use Distributed
Hash Tables (DHTs) to locate and assign resources to specific peers. Hashing-
based architectures such as Chord [12], Pastry [13], and Tapestry [14] allow the
implementation of direct routing search algorithms to efficiently locate files [15].
However, a Hashing-based architectures require overlay networks between peers
that are generally hard to maintain.

In contrast, unstructured systems [7] have no precise control over resources
emplacements. Therefore, the most typical localization method is the flooding
technique, wherein the request is broadcasted to all neighbors within a certain
radius with TTL mechanism (TTL for Time To Live) [15]. More precisely, in
order to find resources on the network, search queries are flooded to neighbor
peers for bounded number of hops. Each query has an attached TTL to control
the number of hops that a query can be propagated to away in the network. On
receiving a query, a peer decrements its TTL, and if the TTL is greater than
0, it forwards the query to neighbor peers. When a TTL reaches 0, the query
was no longer forwarded. However, it is not possible to guarantee the success
or failure of a query. In other words, a resource may not be found even though

Mobile Agent-Based Approach for Resource Discovery in P2P Networks 65

it does exist in the network. To overcome this disadvantage, the mechanism of
dynamic TTL based on the expanding ring technique is proposed in [16]. The
principe of expanding ring is the following: a peer starts a flood with small
TTL, and waits to see if the search is successful. If it is, then the peer stops
the flooding. Otherwise, the peer increases the TTL and restarts another flood.
This process is repeated until finding the required resource or covering all the
network. According to [15], [16], unlike regular flooding with a fixed TTL, the
expanding ring technique guaranties that if a required resource is present in the
network it will be located. However, if expanding ring technique solves the TTL
selection problem, it does not address the message duplication problem that
could generate large loads on the network [15], [16].

Random walk-based search mechanism, which forwards a query message (i.e.,
walker) to a randomly chosen neighbor at each step until the service is found, is a
well-known technique that can avoid the message duplication problem. Using one
walker, it cuts down the message overhead significantly, but it could increase the
delay of successful searches [15], [16]. To decrease the delay, a requesting peer
could send k parallel query messages, and each query message takes its own
random walk. However, it is difficult to determine a priori a suitable number
k of walkers. More precisely, if this number is big enough, the message traffic
could increase significantly [15]. Replication mechanisms, such as caching some
objects along the reverse path of queries, are proposed in [16], in order to reduce
the lookup length and decrease the message traffic. However, in dynamic and
distributed setting, it is difficult to maintain the coherence of duplicated objects.

Both structured and unstructured systems present some drawbacks. Struc-
tured systems use repositories or DHT overlay networks between peers that are
generally hard to maintain. In particular, peer join/leave operations could in-
cur huge overheads [16]. In contrast, unstructured systems allow the peer to
enter and leave the systems without overheads. However, mechanisms used in
the request resolution can generate large traffic loads on the network.

Recently, new alternatives paradigms to the traditional Client/Server para-
digm have been proposed in [3] and [17] for ubiquitous and pervasive computing.
These new paradigms require that discovery systems should have self-organizing
and self-adaptive capabilities. An approach inspired by the human immune sys-
tem to carry out these alternatives paradigms has been presented in [3], [5], [4].
This approach operates as follows: unlike the classical Client/Server approach,,
each user request is considered as an attack launched against the global net-
work. The immune networking middleware reacts like an immune system against
pathogens that have entered the body. It detects the infection (i.e., user request)
and delivers a response to eliminate it (i.e., satisfy the user request) [3], [17].
This approach can be classified in the third category of self-organization discov-
ery systems (see Figure 1). More precisely, peers (i.e., servers) are organized into
communities by the creation of affinity relationships, like the idiotypic network
[18] created by human immune cells (i.e., peers) against foreign antigens (i.e.,
user requests). The establishment of relationship affinities between peers allows
to solve, by collaboration, user requests. A reinforcement learning mechanism is

66 J. Gaber and M. Bakhouya

used to adjust and reinforce dynamically relationship affinity values according
to delivered responses. This reinforcement mechanism permits to cope with dy-
namic changes in the network, the services availability and the user requests. In
other words, new communities may be created or others may be modified ac-
cording to dynamic environment changes. Peers may acquire new memberships
to new communities or drop themselves from current ones through establishing
or deleting affinity relationships [5], [4].

In this paper, a cloning approach based on mobile agent for resource discovery
in unstructured peer-to-peer network together with random walks technique is
presented, as depicted in the figure 1. Within this approach, peers might dynam-
ically and unpredictably join/leave the network, such that any complete knowl-
edge of these changes and modifications is difficult even impossible to obtain.

Fig. 1. Classification of service discovery systems according to their architectures and
their operating modes. Cloning approach presented in this paper is indicated by bold
lines.

3 The Resource Discovery Approach

Unstructured peer-to-peer network can be viewed as an indirect connected graph
G = (S, V), where S is the set of peers (|S| = n) and V the set of links (|V | = m)
connecting the peers. A peer pi is considered to be connected to a peer pj , if
there is a link between pi and pj . In this section, the possibility of embedding the

Mobile Agent-Based Approach for Resource Discovery in P2P Networks 67

mobile agent paradigm and the random walk approach in designing distributed
algorithm for resource discovery in unstructured peer-to-peer network is ana-
lyzed. A mobile agent is a software entity which may move from location to
location to meet other agents or to access resources provided at each location
[19], [20]. A random walk on a graph is a stochastic process that iteratively visits
the vertices of the graph. From a given peer, the walk process moves at the next
step to an adjacent peer chosen uniformly at random [21], [22].

To use mobile agents for resource discovery, let us consider the following three
scenarios. The first scenario associates a unique agent to each peer request while
the second scenario involves multiple agents for each request. The third scenario
uses cloning operation to clone an agent during its random walk.

In the first scenario, to locate a service, the requester peer (origin of the re-
quest) creates a mobile agent, called request agent, and gives it the service to
be located. A service can be composed of one or a set of resources. The mobile
agent starts from a requester peer and then uses links within it to get access
to other peers. The mobile agent chooses randomly between these peers, deter-
mines the IP address of the chosen one and moves to the corresponding peer. The
mobile agent repeats this process with the new peers reached until it find the
required resources. Upon mobile agent termination (i.e. success or fail) it starts
a backtracking phase. During this phase, the agent comes back using the path
computed between the peer holding the last remaining resource to collect (i.e.,
an end point of walk) and the requester peer. It should be noted that compared
to client/server approach, in this scenario, the single mobile agent eliminates the
transfer of intermediate results across the network and thus reduces the end-to-
end latency [20]. However, the time to resolve the request could be unreasonable
in large scale network where peers have no preexisting knowledge of where re-
sources are located so searching for them could require steps. More precisely,
steps are required for a mobile agent to cover a given graph with n nodes i.e.,
the mobile agent visits all nodes of the graph [23].

To reduce this latency problem, multiple mobile agents and mobile agent
cloning scenarios could be more suitable scenarios for the resolution request pro-
cess. In the multiple agents’ scenario, an initial population of mobile agents is
initially created and dispatched randomly for resource discovery. This scenario
should allow the agents to resolve request in a reasonable amount of time com-
pared to the single mobile agent scenario. However, it is difficult to determine the
initial mobile agent population size. When this number is big enough, the agents
traffic increases significantly, but the delay of successful searches is decreased.
Also, the use of very small number decreases the agents traffic and increases
delay of successful searches.

In the mobile agent cloning scenario, a mobile agent starts, at its first step,
on its requester peer. At each hop, mobile agent determines the IP address
of randomly chosen neighboring peers, creates replication (i.e. clone) to itself,
passes tasks to this clones that move to further peers. This scenario should allow
mobiles agents to cover a much wide area of network peers in a reasonable amount
of time compared to the single mobile agent scenario and the multiple mobile

68 J. Gaber and M. Bakhouya

agents’ scenario. It’s worth noting that in multiple mobile agents’ scenario, initial
population size does not change at each step but in mobile agent cloning scenario,
it evolves during the random walks.

More precisely, the algorithm of mobile agent cloning scenario is as follows.
The peer willing to locate a service creates a mobile agent, called request agent.
This agent initiates a random walk in the network until it meets appropriate
peers that can resolves the request or it terminates its random walk. At each
hop, the mobile agent can clones itself. The request discovery process is made
in two phase: forwarding phase and backtracking phase. During the forwarding
phase, request agents seek peers that can provide the required resources. When
the all required resources are discovered, a request agent stops cloning itself,
send results to the requester, and starts the backtracking phase. In this phase,
mobile agent travels back to its initial peer following back the founded path. The
role of this backtracking phase is to perform a reinforcement learning mechanism
on links between peers [24]. More precisely, the objective of this backtracking
phase is to permit for peers to learn from mobile agents satisfactions on past
requests to carry out biased random walk in order to improve performance of
future requests.

During its random walk, a request agent stores the list of the visited peers.
Based on this stored list, called service path, the agent chooses moving to peers
that are not visited yet. However, mobile agents require a mechanism to termi-
nate their walks. To this aim, a mobile agent starts with an initial TTL. If the
required service is found, it stops the search and starts the backtracking phase.
Otherwise, the agent checks if the requester has already get the service from
another clone. If it is the case, the agent is killed. If not, the requester could
assign a new initial TTL to the agent and initiates a new random walk.

It is worth noting that, in the agent cloning scenario, the increasing of the
agent population size with cloning operation will increase resource demands in
the network which will affect the overall performance. Amin and Mikler have
proposed in [25] a regulation algorithm to control the number of clones spawned
in the network (AM algorithm). This algorithm is inspired by stigmergetic pro-
priety of ”ant colony” to facilitate coordination between mobile agents. More
precisely, mobiles agents with minimum cognitive capabilities communicate with
each other using pheromones that assist them to select an appropriate action.
The intensity of pheromones deposited by agents at each node visited is deter-
mined by the equation e−λΔt , where Δt is the time since the deposition of
pheromone and λ is a constant value fixed between 0 and 1. The controller of
each agent contains the action selection algorithm that is defined as follows. An
agent visiting a node at time tb extracts the value of the pheromone that was
deposited at time ta (ta ≤ tb) using the equation e−λ(tb−ta). If this value is above
a certain termination threshold Max, the agent kills itself. On the other hand,
if the pheromone value reduces below a cloning threshold Min, the agent clones
itself. But, if the pheromone is comprised between the termination and cloning
threshold, the agent neither clones nor kills itself. In this case, it migrates to
another peer node.

Mobile Agent-Based Approach for Resource Discovery in P2P Networks 69

Bakhouya and Gaber have proposed in [26], [27] a self-adaptive and dis-
tributed regulation algorithm inspired by the ”human immune system” to reg-
ulate dynamically the agents population size in a network, without using any
global or constant threshold parameters (BG algorithm). The immune system
has emergent properties to make self-regulating and self-adapting in dynami-
cally changing environment [27], [5]. In this algorithm, each mobile agent selects
locally an appropriate behavior to its environment state from the following ones:
death, moving or cloning without using any global information [27].

It should be noted that with AM algorithm, the number of agents in the
network converges to a constant number that depends only on the threshold
parameters that should be determined a priori with empirical simulations for
example. With the BG algorithm however, the number of agents in the network
converges to a value that is adjusted dynamically according to the changes in
the network. Therefore, BG algorithm is a distributed self-regulation algorithm.

The Figure 2 shows an example of how request resolution process works with
cloning scenario. Peer P1 possesses the resource R1 and desires locate a service
S = (R1, R2, R3, R4) To locate this service, P1 creates a request, initiates one
mobile agent MA1 and gives it the list of resources to be located, the IP address
and the initial TTL. The agent add the peer P1 to its visited peers list (i.e.,
service path) and moves to the peer P2 chosen randomly. Since, this peer provides
the required resource R2, it is added to the visited peers list. At this step, MA1

residing in peer P2 creates another agent MA2 that walk to peer P6. These
agents repeat the same process until they find the required service or their TTL
is expired (i.e., TTL becomes equal to 0). The visited peers of request forwarding
phase of the two mobile agents are shown with thicker arrows. The mobile agent
(MA2) with service path (P1, P2, P6, P5) fails, while the second mobile agent
(MA1) with service path (P1, P2, P3, P4) terminates with a successful research.
During the backtracking phase, the mobile agents goes back from the last peer
visited, via the intermediate peers on the founded service path, to the initial
peer. The backtracking phase is started for this two mobile agents on the reverse
path shown in figure 2 with dotted arrows. It should be noted that we can
use a reinforcement learning mechanism to adjust and reinforce dynamically
relationship affinity values between peers according to the delivered responses
as pointed out in [24].

4 Simulation Results

Simulations are implemented by NS2 [28]. The objective of the simulations is
to compare these three mobile agent-based scenarios. A network of 100 peers is
generated randomly with BRITE generator [29]. Each peer provides one resource
among ten kinds of resources. The simulation abstracts any considerations about
networking issues such as bandwidth constraints and time processing. Recall that
the objective of the resource discovery system is to discover and select peers that
can resolve user requests.

70 J. Gaber and M. Bakhouya

Fig. 2. Request forwarding and backtracking phases to locate the service (R1, R2, R3,
R4) with the mobile agents cloning scenario

Fig. 3. Resolution request time for mobile agent scenarios

In figure 3, the cloning mobile agent scenario shows a request resolution time
better than that of single and multiple mobile agents scenarios independent of
searched service (one, five or ten resources). This is due to the number of agents
launched by cloning operation for the request discovery. More precisely, mobile
agents may be cloned and dispatched in different directions. Therefore, this end
allows mobiles agents to cover a much wide area of network peers and resolve

Mobile Agent-Based Approach for Resource Discovery in P2P Networks 71

requests in a shorter time. In multiple mobile agent scenario, a requester peer
creates a fixed number of mobile agents (5 mobile agents in this simulation) and
dispatch them in different directions. This scenario allows mobile agents to work
in parallel, but shows a running time greater than that of a mobile agent cloning
scenario as shown in figure 3.

5 Conclusion

This paper analyzes three scenarios for resource discovery in unstructured peer-
to-peer network based on a mobile agent-based approach together with random
walks technique. From the simulation, the agent-based approach with cloning
scenario outperforms the single agent scenario and the multiple agent scenario.

Future work will address additional simulations with ns2 to evaluate the ap-
proach performance when storage and bandwidth communication are considered
and compare it with other approaches proposed in the literature. In this paper,
we have concentrated our effort first to demonstrate the viability of the proposed
agent based approach with three scenarios together with ns2 simulations. Fur-
ther investigation will address also the specification issue and the performance
evaluation of the approach with various biased random walks schemes.

References

1. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Software Practice and Experi-
ence 32, 135–164 (2002)

2. Gidron, Y., Holder, O., Ben-Shaul, I., Aridor, Y.: A taxonomy and survey of grid
resource manage-ment systems for distributed computing. Software Practice and
Experience 13, 5–21 (2001)

3. Gaber, J.: New paradigms for ubiquitous and pervasive computing. Technical Re-
port RR-09-00, Universite de Technologie de Belfort-Montbeliard (2000)

4. Bakhouya, M., Gaber, J.: Adaptive approches for ubiquitous computing. In: Lo-
biod, H. (ed.) Mobile networks and wireless sensor networks, Hemes-Lavoisier, pp.
129–163 (2006), ISBN 2-7462-1292-7

5. Bakhouya, M.: Self-adaptive approach based on mobile agent and inspired by hu-
man immune system for service discovery in large scale networks. Phd thesis,
Universite de Technologie de Belfort-Montbeliard, Belfort CEDEX, 90010 France
(2005)

6. Bakhouya, M., Gaber, J.: Self-adaptive and self-organizing approaches to design
ubiquitous and pervasive applications. In: Encyclopedia in Mobile Computing and
Commerce (EMCC) (to appear, 2007)

7. Saroiu, S., Gummadi, P.K., Gribble, S.D.: Measuring and analyzing the character-
istics of napster and gnutella hosts. ACM Multimedia Systems Journal 9, 170–1840
(2003)

8. Czerwinski, S., Zhao, B., Hodes, T., Joseph, A., Katz, R.: An architecture for a
secure service discovery service. In: ACM MobiCom 1999, Atlanta, USA, ACM,
New York (1999)

72 J. Gaber and M. Bakhouya

9. Xu, D., Nahrstedt, K., Wichadakul, D.: Qos-aware discovery of wide-area dis-
tributed services. In: First IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid), IEEE/ACM (2001)

10. Iamnitchi, A., Foster, I., Nurmi, D.: A peer-to-peer approach to resource discovery
in grid environments. In: High Performance Distributed Computing (HPDC 2002),
Edinbourgh, UK, IEEE, Los Alamitos (2002)

11. Talia, D., Trunfio, P.: Web services for peer-to-peer resource discovery on the grid.
In: High Performance Distributed Computing (HPDC 2002) (2002), www.grid.it/

12. Stoicay, I., Morrisz, R., Liben-Nowellz, D., Kargerz, D., Kaashoekz, M.F., Dabekz,
F., Balakrishnanz, H.: Chord: A scalable peer-to-peer lookup protocol for internet
applicationss. In: Proceedings of the 2001 ACM SIGCOMM Conference, California,
USA, pp. 149–160. ACM, New York (2001)

13. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

14. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley
(2001)

15. Wang, C., Li, B.: Peer-to-peer overlay networks: A survey. Technical Report TR-
P2P, Department of Computer Science, HKUST (2003)

16. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer network. In: 16th ACM International Conference on Supercom-
puting (ICS 2002), pp. 329–350. ACM, New York (2002)

17. Gaber, J.: New paradigms for ubiquitous and pervasive applications. In: Proc. of
the First Workshop on Software Engineering Challenges for Ubiquitous Computing
SEUC 2006, Lancaster, UK (2006)

18. Jerne, N.: Towards a network theory of the immune system. Ann. Immunol (Inst.
Pasteur) 125, 373–389 (1974)

19. Carzaniga, A., Picco, G., Vigna, G.: Designing distributed applications with mo-
bile code paradigms. In: 19th International Conference on Software Engineering,
Boston, MA (1997)

20. Straber, M., Schwehm, M.: A performance model for mobile agent systems. In:
Parallel and Distributed Processing Techniques and Application (PDPTA 1997),
Las Vegas, USA, pp. 1132–1140 (1997)

21. Broder, A.Z., Karlin, A., Raghavan, P., Upfal, E.: Trading space for time in undi-
rected s-t connectivity. In: ACM STOC 1989, pp. 543–549 (1989)

22. Baala, H., Flauzac, O., Gaber, J., Buid, M., El-Ghazawi, T.: A self-stabilizing
distributed algorithm for spanning tree construction in wireless ad hoc networks.
Journal of Parallel and Distributed Computing (JPDC) 63, 97–104 (2003)

23. Broder, A., Karlin, A.: Bounds on the cover time. Journal of Theoretical Proba-
bility 2, 101–120 (1989)

24. Bakhouya, M., Gaber, J.: A reinforcement learning of link affinities and user re-
quests for self-adaptive graph emergence from an arbitrary graph. Technical Report
RR-03-07, Universite de Technologie de Belfort-Montbeliard, UTBM (2003)

25. Amin, K., Mikler, A.: Dynamic agent population in agent-based distance vector
routing. In: Second International Workshop on Intelligent Systems Design and
Applications, Atlanta, USA, pp. 543–549 (2002)

26. Bakhouya, M., Gaber, J.: Distributed autoregulation approach of a mobile agent
population in a network. Technical Report RR-02-12, Universite de Technologie de
Belfort-Montbeliard (2002)

Mobile Agent-Based Approach for Resource Discovery in P2P Networks 73

27. Bakhouya, M., Gaber, J.: Adaptive approach for the regulation of a mobile agent
population in a distributed network. In: International Symposium on Parallel and
Distributed Computing (ISPDC 2006), Timisoara, Romania, pp. 1132–1140. IEEE,
Los Alamitos (1997)

28. Wittner, O.: Nework simulator patch. In: Faculty of Information Technology, Math-
ematics and Electrical Engineering, Department of Telematics (2000)

29. Medina, A., Lakhina, A., Matta, I., Byers, J.: Brite: An approach to universal
topology generation. In: Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MAS-
COTS 2001), Cincinnati, Ohio (2001)

Chora: Expert-Based P2P Web Search

Halldor Isak Gylfason, Omar Khan, and Grant Schoenebeck

Electrical Engineering and Computer Science
University of California, Berkeley

{halldor,omar,grant}@cs.berkeley.edu

Abstract. We present Chora, a P2P web search engine which comple-
ments, not replaces, traditional web search by using peers’ web viewing
history to recommend useful web sites to queriers. Chora is designed
around a two-step paradigm. First, Chora determines which peers to
query and then it executes a query across these peers. Each peer uses
a desktop search engine to query their local web history and retrieve
results ordered by relevance. To determine which peers to query, a small
sketch of the information available from each peer is stored in a DHT.
Peers with sketches indicating that they may have relevant information
are queried. The query is dispersed through an ad hoc network connect-
ing only those machines in the query and is optimized for getting good
results as quickly as possible.

1 Introduction

While P2P Web search is not a new technique, most of the previous work in this
area focuses on creating a P2P network which searches the entire Web [1,2,3,4].
Previous P2P Web search efforts have grown out of two observations: (1) even
the largest centralized search engines probably cannot index the entire web and
(2) Distributed Hash Tables (DHTs) [5,6] provide an efficient way to index large
amounts of data in a distributed manner. However, there are problems with these
observations and the systems built upon them. One simple proof that there
is something wrong is that these systems, some of which have been deployed
commercially, have not been very successful.

We believe that one crucial observation is missing: you cannot replace a web
search engine solely with promises of the future. With all P2P systems you need
a bootstrapping mechanism: a way to grow the system until it reaches a sufficient
number of users to sustain itself. None of the previous systems describe an ef-
fective bootstrapping mechanism. The added benefits that these systems claim,
such as resistance to censorship and ability to search over a larger database, exist
only in the future, and until these systems have many users, they are essentially
an incomplete reproduction of a centrally hosted search engine.

By recognizing the extra observation above, we designed Chora not to replace
centralized Web search engines, but rather to use P2P search in the areas of
Web search where it can offer the most improvement. The design of Chora was
motivated by a few scenarios where additional peer information could potentially
improve search:

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 74–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Chora: Expert-Based P2P Web Search 75

1. You find a new band that you like, say, Arcade Fire. You want to find out
more about this band: who else likes their music and what they enjoy about
it?

2. You need to concatenate two pdf files but do not know how.

In the first case, there is a group of people, experts, who will be able to answer
the query well. If you could find and directly contact these experts for advice,
they would be able to show you the results they found most useful. In the second
case, you are seeking the same item which a large group of people has already
sought and found. If you can identify these pages, you could use their experience
to expedite your own search.

P2P search is a natural way to aggregate the experiences of individual users.
P2P search interacts directly with user nodes, which contain a user’s full brows-
ing experience, along with many other facets of their computing history. On the
other hand, web search engines, for the most part, only have access to result
clicks, and suppositions inferred from those clicks.

Chora, facilitated by using a two-phase query, provides a means of aggregat-
ing a user’s rich computing history. In the first phase, sketch query, it queries
a database stored in a Distributed Hash Table (DHT) to obtain a list of peers
which are most likely to have relevant information. This DHT contains a sketch
of what is on each computer, each sketch being a collection of the most impor-
tant keywords for each user. From this query Chora builds a target list of peers
to query. During the second phase, peer query, Chora delivers a query to each
of these peers and aggregates the results.

Our two-phase execution works by limiting the number of peers queried by first
identifying who is likely to be able to give relevant information. This necessity
is born out of two limitations: it is infeasible to query every peer as has been
seen in P2P applications such as Gnutella [7,8,9]. On the other hand, users
are weary about the privacy of their web-browsing history. With a full index,
in a centralized server or on a DHT, this information has to leave the user’s
computer wholesale. In Chora the only information that needs to leave the
peer’s computer is a small sketch, which the user can filter.

There are two major contributions of this work: the observation that much
of a single user’s browsing history (along with all their computer interactions)
is readily available to help supplement the web search results of all users; and
a method that generates a sufficient description of the content of each user’s
computer, in order to efficiently direct queries to users likely to have good results.
For the method presented in this paper, we use a user’s browsing history and
behavior as available in desktop search products like Google Desktop [10] to
concisely capture their expertise. The main abstraction used is the concept of
a click graph, which helps organize a user’s web pages based on connectivity
implied by their clicks and summary statistics describing their interaction with
each page.

Previous work has not fully explored the method of first locating peers using
sketches. Many have thought that it would simply be too difficult to find informa-
tion stored in this way. A contribution of this paper is a study on how feasible it

76 H.I. Gylfason, O. Khan, and G. Schoenebeck

is. An additional contribution is the design and implementation of Chora which
efficiently routes queries, in order to receive good results as quickly as possible.

The paper is organized as follows: Section 2 explains the systems related
details of the implementation. Section 3 explains how Chora generates sketches
and aggregates query results, while Section 4 contains an evaluation of Chora.
Finally, Section 5 briefly surveys relevant previous work and Section 6 concludes.

2 System Architecture

In this section we describe the architecture of Chora. Our implementation uses
the Python programming language, the OpenDHT Distributed Hash table [11]
and Google Desktop.

2.1 Query Setup

Initially, when a user joins Chora, the user’s set of keywords is computed, as
described in Section 3, and subsequently each keyword is registered in OpenDHT
under the SHA1 hash of the keyword. Each registered keyword contains meta-
data such as the URL of the computer, location/bandwidth parameters, and
a set of related keywords on that computer. This is done to optimize queries
involving multiple query terms, where we wish to find computers containing all
of those keywords. Finally, every computer registers under a common fixed key,
so the system can optionally flood queries to all participants – an option clearly
feasible in the first stages of deployment.

2.2 Phase 1 - Sketch Query

When a user issues a query to Chora, the system attempts to locate computers
that are likely to have good results, based on each machine’s list of keywords.
This list of peers is referred to as the target list. Conceptually, a Get is performed
to OpenDHT on each word in the query, and the peers whose sketches contain the
most keywords are computed and prioritized. This can be optimized by using
the meta-data that stores a set of other keywords for that computer, or by a
mechanism embedded in the DHT such as PIER’s in-network joins [12]. Once a
target list has been constructed, the system moves to the peer query phase.

2.3 Phase 2 - Peer Query

At this stage, the query needs to be distributed to all the nodes in the target
list. Since in the OpenDHT model, the nodes are not participants in the DHT
routing, they must build a routing mechanism external to the DHT. In this
model each node has greater control over the routing than it would have if the
routing were embedded in a multicast enabled DHT. In particular, queries can
first be sent to the nodes most likely to have good results.

Chora: Expert-Based P2P Web Search 77

For a large P2P network, it is likely infeasible for the issuing node to send
the query directly to all of the related peers, so a query dissemination tree is
constructed with the issuing node as the root. Each node in the tree receives
the query from its parent, along with a list of computers which will become
that node’s descendants. The node then selects some of the descendant nodes
from that list to become its children, divides the rest of the list among them,
and forwards the query. Then the node executes the query locally using Google
Desktop, and sends the local query results upstream. For fault tolerance, a list
of ancestors can be maintained, so single node failures will not break the tree.

When constructing the tree it is important to be aware of the location of
the nodes. Clearly, when selecting children it is important that the latency is
as low as possible; a node in North America should not distribute its query to
China, when it can choose other nearby nodes. Furthermore, nearby nodes are
not equal. Some have access to more bandwidth, are more likely to have relevant
information, have longer up-times and are more reliable. This observation has
lead to a super-node architecture (e.g. Gnutella ultrapeers). The super-node
architecture contains two types of nodes: leaf-nodes and super-nodes. The main
tree is composed solely of super-nodes and the leaf-nodes are leaves of a super-
node in the tree. In particular, only super-nodes have children. One advantage
of this model is that slow nodes can be placed near the root of the tree without
negatively affecting the time it takes results from other nodes to return.

Detecting near-by nodes can be done in various ways. In Chora, query trees
are short lived so we do not want to do any costly probing of individual machines
at the time of the query. Thus, we opted for a network coordinate system to com-
pute the latency [13]. Every node stores its Internet coordinates in the keyword
meta-data. The state in the DHT is soft, so this registration is continuously
updated to reflect changes in the coordinates.

We implemented 3 different methods of constructing the query tree:

1. Random: Here each node selects its children randomly, while respecting
some system-configured fan out.

2. Location based: In this model each node selects the children to be the
closest nodes according to the network coordinates, again respecting some
system-configured fan out.

3. Location based with super-nodes: In the super-node model each node se-
lects two types of children: super-children and leaf-children. Thus if a super-
node is sufficiently close it will be selected as a super-child, despite the fact
that some other nodes may be slightly closer. The primary goal when select-
ing leaf-children is to select nodes with data relevant to the query, in order
for the user to more quickly receive good results. Each node decides for itself
if it is a super-node, and may include metrics such as bandwidth, uptime or
be statically configured. This indicator is stored in the DHT meta-data.

We have simulated these three approaches and results indicate that with the
super-node approach we are successful in getting more results in early, and since
the tree is constructed with nodes near the root that are likely to have good
results, the user will notice considerable improvement.

78 H.I. Gylfason, O. Khan, and G. Schoenebeck

Fig. 1. Query Execution with super-nodes

3 Search Quality

3.1 Sketches

Chora’s two-step query relies on good sketches in order to locate peers who have
information relevant to the query. Because the DHT can only look up keywords,
we are restricted to describing users by a list of searchable keywords (assuming
a user population large enough to render flooding impractical).

Recall the goal behind these sketches: each user wants to advertise topics
for which they have already done extensive research so that other users can
leverage that research. For example, Chora can leverage users that might have
no long-term interest in a topic like “DVD players,” but who are marked as an
expert on “DVD players” because they recently performed extensive research
on DVD players in preparation for a purchase. We observe that the users who
share similar interests are only good users to query if the query is related to
their shared interests. Therefore, characterizations of peers that are not query
sensitive (i.e. bookmarks) are insufficient for our purpose.

Because these sketches are stored on another system, privacy is a concern.
Mechanisms can be added to allow the user to filter the keywords in sketches
published by his computer or to disallow certain queries from being accepted by
his computer. Another way to ensure privacy is to obfuscate the results from
each peer. For example, each peer could be made to contain a few results that
the user did not browse. In this way the user could deny having actively viewed
any results issuing from his machine.

Clustering. To make a sketch, we attempt to cluster related web pages in the
user’s browsing history. The keywords from the best clusters will constitute our
sketch. Clustering has three parts: generating click graphs, merging click graphs,
and extracting keywords.

Generating Click Graphs. We can divide web viewing into sessions. Each viewing
session is initiated by the user opening the web-browser or actively entering data

Chora: Expert-Based P2P Web Search 79

Fig. 2. A Click Graph

into the web browser (e.g. entering a URL or executing a web search query).
Within each session the user navigates by clicking links. For each session we can
define a click graph G = (V, E), where V is the set of web pages visited during
the session and there is a directed edge between web pages p1 and p2 if the user
clicked a link leading to the web page p2 from the web page p1 (see figure 2). We
assume each page is labeled by its URL. In addition, there are other summary
statistics associated with a page: the amount of time the user spent on the page,
the number of times the user visited the page, etc..

Merging Click Graphs. We combine click graphs that pertain to sessions on
related subjects. For example, when users are researching a subject, they often
perform multiple queries on that subject. All these queries induce distinct click
graphs, however all these graphs are related and should be combined and treated
as one.

Click graphs generated from chronologically contiguous sessions are more
likely to be on the same topic. Additionally, click graphs that share URLs or
have many common words are likely to be on the same topic. Chora uses these
three criteria: time, word commonalities, and link commonalities, to help identify
and merge click graphs that are on the same topic.

Keyword Extraction. We now show how Chora computes a vector v which
contains word-score pairs (w, s(w)) for each word w that appears on a page
in the session using a variant of TF-IDF. We can associate a duration tp with
each vertex p ∈ V which indicates the time the user spent on that page. Let
fp(w) = {# of times w appears on p}/{# of words on p} be the frequency
of word w on page p ∈ V .1 We define the score of word w for session i as
ŝ(i)(w) =

∑
p fp(w)tp/T where T =

∑
p∈V tp is the total time spent in this

cluster. It can easily be verified that
∑

w ŝ(i)(w) = 1.
Finally, in order to get the words that best describe a cluster we normalize

across all clusters. Let I be the set of clusters. s(i)(w) =
ŝ(i)(w) − 1

|I|−1

∑
j∈I,j �=i ŝ(i)(w). Note that not all of the s(i)(w)s will be pos-

itive. We then score each cluster based on a combination of the time the user
1 In computing fp we also take other factors into account, e.g. capitalization.

80 H.I. Gylfason, O. Khan, and G. Schoenebeck

spent viewing pages in the cluster and the scores of the words in the cluster.
The top k clusters are included in the sketch. The number of keywords included
with each cluster is proportional to the score of the cluster. k is a parameter
that depends on the desired sketch size.

Size of Sketch. Currently, Chora limits its DHT entries to at most 1 kilobyte.
When each keyword is stored in the DHT, Chora includes the keyword itself,
the meta-data of the user’s machine and as many other keywords from the same
cluster as will fit. Priority is given to the most important keywords and this
number tends to be around 30 in practice.

By using the estimations from [14] that each participating node in the DHT
can store 1 GB, and estimating that 10% of the the users of Chora participate
in the DHT, each user can store 100, 000 keywords. In our opinion that is larger
than is needed for Chora.

Keyword Shortfalls. One issue with keywords is that there are situations
where it is not desirable to search over individual keywords, for example when
searching for a quote. The query “It was the best of times, it was the worst of
times” would almost certainly fail if we use the keyword mechanism described
above.

This problem can be mitigated by asking the user to separate their query into
a topic (“Charles Dickens”) and a subquery (the quote mentioned above). Then
Chora would use “Dickens” as a keyword (to identify a target list of machines),
but locally search each machine with the subquery. Some users might not be
able to connect a quote like this with the context (“Dickens”), but we note
that centralized search engines already perform exceedingly well on this type of
search.

Another issue is that the DHT can only support exact matches amongst key-
words. If one machine is an expert on “UC Berkeley”, but a user searches for
“University of California, Berkeley” the first machine may not be included in
the target list.

Two ways to alleviate this problem include searching over URLs and auto-
matically generating keywords synonyms. Sometimes a URL describes a topic
better than any word. In the aforementioned example, there are many ways
to describe UC Berkeley as exact keywords, but it has only one homepage:
www.berkeley.edu. Furthermore, additional keywords can be generated on the
fly, for example, by looking at the words the appear in the snippets – the 2 or 3
line query-sensitive summaries of each result – of a centralized web search.

3.2 Ranking and Aggregation

In each of the two phases, sketch query and peer query, the results must be
ranked. The order of the sketch query rank is used to decide which machines to
query if too many positive results come back. It is also used in the super-node
model to decide where peers should be in the query tree.

Chora: Expert-Based P2P Web Search 81

Sketch query ranking. Chora ranks the machines based on three criteria:

1. The number of query words that the keyword list contains.
2. Where the query words appear in the keyword list (keywords at the front of

the keyword list are assumed to be more important).
3. How closely related the keywords are in the peer. (For example, if all the

keywords are found in the same DHT entry, they must all be keywords for
the same cluster or topic).

Peer query ranking. Locally, each computer uses a desktop search application
to locate the relevant web sites from their browser history. Unfortunately, desk-
top search systems still have poor relevancy ranking algorithms. We attempt to
improve the ranking by considering the time the user spent on the page (if they
spent very little time, the page is likely bad) and the number of times the user
visits the page. When aggregating these results, Chora takes two things into
account: the number of peers that recommend a particular site and the rank that
each recommending peer gives the site (relative to their other recommendations).

The results are updated on the fly, so when Chora receives more complete
responses that reorder or add additional results, these updates are immediately
conveyed to the user. Ideally these results would be used to rerank typical web
search engine results. In our current implementation we place the Chora results
beside the web search engine results.

4 Evaluation

Keyword Coverage. Consider k users, each with a set Di documents. Suppose
we have a query q. Clearly if we issued q against a full-text index which indexed
every word for each document d ∈ D1∪D2∪. . .∪Dk then we would be absolutely
sure that the results Rf (q) (f for full) cover every possible document. In our
setting, the DHT acts as a partial-text-index. If Rp(q) (p for partial) is the
results for querying q against our partial text index, then we are interested
in maximizing the coverage ratio, C(q) = |Rp(q)|/|Rf (q)|. Coverage ratio is a
relaxed definition of recall: it says that the set of relevant documents is Rf (q).
In this relaxed setting, precision is trivially 1.

One way of growing Rp(q) is to just store more keywords for each document.
In the limit, we approach a full-text index. However, we tradeoff increasing
keywords with the increased storage and communication overhead.

One observation is that as long as we use a partial-text index, one will always
be able to construct a query q that makes C(q) small 2. However, in reality, it is
only important that C(q) be large for reasonable queries. For a given topic, like
“Peer to Peer Networks,” we would expect a reasonable query to be something
like “Gnutella Ultrapeers,” whereas there are a huge number of unreasonable

2 Note that this analysis does not apply if we assume that users will change their
querying behavior to first specify a topic (e.g. “Charles Dickens”) that is used to get
a list of machines, and then specify a query.

82 H.I. Gylfason, O. Khan, and G. Schoenebeck

queries. Our ultimate goal is to cover a high percentage of the reasonable queries
for all topics with a small number of keywords for each cluster in the sketch.

To test our system, we hand-generated 10 topics. You can see one such topic
in Table 1. The table contains a set of training and test queries for the popular
topic, “Harry Potter.” Each topic has 15 training queries that describe the topic,
and at least 5 test queries.

When users index the Google results for training queries like “Harry Potter”
and “Professor Snape,” we expect that one or more of their partial text indices
would be able to answer test queries like “Ron Weasley.”

Given this, we now create a set of fictional users. Each user u chooses a topic
from their topic distribution Tu, and then from within that topic they choose
k queries from the training set. They then take m of the results for each query
from Google as their own pages. At this point, each user has km webpages.

We then build a full-text-index over all the documents, as well as the Chora
keyword-list sketches. For each topic set, we run the test queries against each
index and compute the coverage for each query.

The coverage percentages in Table 1 indicate that for the training queries,
the coverage is perfect, which is not surprising. The test query coverages are
indicative of a trend across all the topics: we found that queries either had full
coverage (Rp = Rf), or no coverage at all (Rp = 0). The keyword generation
mechanism, while good in some instances, nevertheless fails for many queries we
consider to be reasonable extensions of the training sets.3

Table 1. Training and Test Queries for the topic Harry Potter, along with their cov-
erage

Harry Potter
Training Queries Percent Coverage

Harry Potter 100 %
Harry Potter and the Sorcerer’s Stone 100 %

Professor Snape 100 %
Professor McGonagall 100 %

Albus Dumbledore 100 %
. . .

Test Queries Percent Coverage
Hogwarts School of Magic 100 %

Phoenix hair wand 100 %
Ron Weasley 0 %

Daniel Radcliffe 0 %

To understand the coverage across topics, Figure 3 was generated by taking
the average coverage over each topic and then placing each average in the indi-
cated bins. While it’s encouraging that on all topics most test queries are hit,
there clearly remains room for improvement.
3 Again note that if the query here were topic = “Harry Potter”, subquery = “Ron

Weasley” we would do much better.

Chora: Expert-Based P2P Web Search 83

Fig. 3. Average Topic Coverage for Test Queries (each user has at most 1000 keywords
per topic)

Because we ran this experiment on hand-picked data and did not actually
browse the web pages, it does not make sense to talk about a relevant set of
documents that is a subset of Rf (q). We first hope to improve the coverage ratio
and then run our algorithms on real user data where users can describe a relevant
set of documents for the query, and hence we can generate true precision and
recall numbers.

5 Related Work

While several P2P Web search engines have been created to search the entire
web, [1,2,3] and to a lesser extent [4], Chora is more closely related to [2,15].

Similar to Chora, [2] proposes a two-phase paradigm. However, these two
phases are significantly different to Chora’s. The first phase looks for peers by
searching for both query terms and the user’s bookmarks in a full inverted index.
It then uses the KL divergence over the distribution of words to prune the list of
candidates. At query time, the query is sent point-to-point to all peers discovered
during step 1. In contrast, Chora exploits the user’s full web viewing history
and habits to generate (and prune) the keywords which summarize the data on
the computer, and distributes the query through an optimized query tree. In
addition, Chora uses the peers’ web viewing history to recommend documents.

Other approaches have been proposed for finding peers with related content
in P2P systems. In [16], the authors of the Minerva system analyze multiple
algorithms that can be used to compare a query to a peer’s local database. Un-
like Chora, the Minerva analysis does not divide the database of documents
into clusters or click graphs, but instead looks at global statistics of terms when
choosing the best peer to query. However, like Chora, Minerva generates lists of

84 H.I. Gylfason, O. Khan, and G. Schoenebeck

the best peers to query by storing term-to-peer mappings in a DHT [17]. In [18],
the system routes queries to peers using an implicit, distributed index, rather
than an explicit index as in Chora. For each neighbor, a node stores a summary
of the content available at that neighbor and all nodes within a small number of
hops of that neighbor. A query is routed to the neighbor with the most related
summary.

Coopeer is similar to Chora in the sense that it does not necessarily attempt
to replicate and improve the centralized web search, but, initially, at least, to
complement it. It can be seen as a web-search generalization of Gnutella. While
it uses local flooding for queries, it attempts to learn a good network on which
to do this flooding. It is also similar to Chora in two significant ways. 1) Lim-
ited information, besides query results, are removed from a users’ computer.
2) It attempts to use information from the users’ web favorites to answer the
query. However, Chora differs from Coopeer significantly in that Chora uses a
two-step query while Coopeer floods the network. Also, while Coopeer only use
favorites, Chora makes full use of the web browsing history, and attempts to
organize it according to topics.

As previously mentioned, Chora uses some techniques developed in the
Gnutella setting, such as the concept of ultrapeers [19,20] when building the
query tree (see Section 2 for details). Another similarity is that Chora’s two-
phase query processing can be seen as a dynamic version of semantic over-
lays [21], which limit the flood plain of queries in Gnutella. Each semantic overlay
clusters users around a particular topic and when a file is looked for, only the
relevant semantic overlays are flooded.

6 Conclusions

We have presented Chora, a P2P Web Search engine that complements, not
replaces, traditional web search engines. The execution of a query in Chora
involves a two-step paradigm, where first a set of peers is selected to query
based on summary sketches, and then the query is executed on these peers in
an ad-hoc query dissemination tree. The sketches are created using a sketch
generation algorithm which employs the novel use of a click graph.

Chora could be further improved by integrating techniques from the IR com-
munity into the sketch generation algorithm. Also, it could be augmented by us-
ing learning techniques. For example, Chora could be customized to each peer
by weighting the advice of peers that it has, in the past, found helpful. Another
example is that keywords which are commonly searched for could be pinned into
the list of keywords for a user and unused keywords could be replaced by other
relevant words. We hope to explore these areas in future work.

Acknowledgements. We would like to thank Joseph Hellerstein and Timothy
Roscoe for their helpful conversations and support.

Chora: Expert-Based P2P Web Search 85

References

1. Festa, P.: Search project prepares to challenge google. C-net News (2001)
2. Bender, M., Michel, S., Weikum, G., Zimmer, C.: Bookmark-driven query routing in

peer-to-peer web search. In: Workshop on Peer-to-Peer Information Retrieval (2004)
3. Christen, M.: (Yacy - distributed p2p-based web indexing),

http://www.yacy.net/yacy/
4. Suel, T., Mathur, C., Wu, J.W., Zhang, J., Delis, A., Kharrazi, M., Long, X., Shan-

mugasundaram, K.: Odissea: A peer-to-peer architecture for scalable web search
and information retrieval (2003)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference, pp. 149–160 (2001)

6. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. Technical Report TR-00-010, Berkeley, CA (2000)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: CLIP2: Gnutella
Protocol Specification v 0.4 (2001)

8. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The case for a hybrid p2p
search infrastructure. Technical report, Intel Research (2003)

9. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: (Gnutella proposals for dy-
namic querying.), http://www9.limewire.com/developer/dynamic query.html

10. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: (Google desktop),
http://desktop.google.com

11. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Sto-
ica, I., Yu, H.: Opendht: A public dht service and its uses. In: Proceedings of ACM
SIGCOMM 2005 (2005)

12. Huebsch, R., Hellerstein, J.M., Boon, N.L., Loo, T., Shenker, S., Stoica, I.: Query-
ing the internet with pier. In: Proceedings of 29th International Conference on
Very Large Databases (VLDB) (2003)

13. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system (2004)

14. Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R.:
On the feasibility of peer-to-peer web indexing and search. In: 2nd International
Workshop on Peer-to-Peer Systems (2003)

15. Zhou, J., Li, K., Tang, L.: Toward a fully distributed p2p web search engine.
In: Proceedings of the 10th IEEE International Workshop on Future Trends of
Distributed Computing Systems

16. Chernov, S., Serdyukov, P., Bender, M., Michel, S., Weikum, G., Zimmer, C.:
Database selection and result merging in p2p web search. In: Third International
Workshop on Databases, Information Systems and Peer-to-Peer Computing (2005)

17. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Minerva: Col-
laborative p2p search (demo). In: Proceedings of the 31st International Conference
on Very Large Databases (VLDB) (2005)

18. Petrakis, Y., Koloniari, G., Pitoura, E.: On using histograms as routing indexes
in peer-to-peer systems. In: Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.)
DBISP2P 2004. LNCS, vol. 3367, pp. 16–30. Springer, Heidelberg (2005)

19. Petrakis, Y., Koloniari, G., Pitoura, E.: (Gnutella ultrapeers),
http://rfc-gnutella.sourceforge.net/Proposals/Ultrapeer/Ultrapeers.htm

20. Petrakis, Y., Koloniari, G., Pitoura, E.: (Gnutella), http://gnutella.wego.com
21. Crespo, A., Carcia-Molina, H.: Semantic overlay networks for p2p systems. Tech-

nical report (2002)

K-link : A Peer-to-Peer Solution for

Organizational Knowledge Management

Giuseppe Pirro’1, Domenico Talia1,3, and Massimo Ruffolo2,3

1 Department of Electronics, Computer Science and Systems, University of Calabria
Via Pietro Bucci, Cubo 41C, I-87036 Rende (CS), Italy

{gpirro,talia}@deis.unical.it
2 ICAR-CNR, Via Pietro Bucci, Cubo 41C, I-87036 Rende, Italy

ruffolo@icar.cnr.it
3 EXEURA s.rl, Rende (CS), Italy

Abstract. In the latest years knowledge management received more and
more attention as a source of competitive advantage for enterprises and
organizations, therefore becomes important to understand how computer
science solutions should be designed to efficiently manage knowledge.
Most of the current knowledge management systems use technological ar-
chitectures that are in contradiction with the social processes concern-
ing the creation of new knowledge, slowing down organizational innova-
tion. Actually, most of those systems use centralized architectures filter-
ing knowledge from any form of personal and contextual interpretation.
Recently a new paradigm supporting cooperative and dynamic aspects
of knowledge management (KM) has been proposed: Distributed Knowl-
edge Management (DKM). In particular, peer to peer (P2P) architectures
seem to naturally fulfil the requirements of this new model. Nevertheless,
current P2P architectures suffer from heavy limitations due to the lack of
semantic supports for handling knowledge. To overcome these limitations,
the scientific community is appraising the possibility of using ontologies
as a semantic support in KM processes. This paper presents an ontology
based P2P system for DKM named K-link. The system design and its im-
plementation are described. Moreover an ad hoc ontology framework for
supporting organizational KM is also presented.

1 Introduction

In the nineties a new organizational paradigm has been proposed [1]. This par-
adigm points out knowledge as a key resource for organizations and aims at
establishing paths to be followed for better exploiting organizational knowledge.
Earlier organizational models [2] saw the organization like a box with the aim to
maximize the output given an input or like something that can be scientifically
and rigorously managed. With Simon’s theories about the bounded rationality
[3]the theme of the KM becomes more important and the role of the organization
in the KM processes notably changes. The organization becomes a way to con-
nect the knowledge of many subjects into a more complete understanding of the

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 86–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

K-link : A Peer-to-Peer Solution for Organizational Knowledge Management 87

reality. The technologies’ role also changes: they become a way to increase peo-
ple’s rationality by allowing memory and computational increase and knowledge
exchange. Along the years several other theories about knowledge have been pro-
posed. A generally accepted classification proposed by Polanyi [4,5] and extended
by Nonaka [6] identifies from one side: ”tacit knowledge” as the knowledge re-
sulting from personal learning within an organization. Form the other side, the
”explicit knowledge” is a generally shared and publicly accessible form of knowl-
edge. This kind of knowledge is typically stored. Explicit knowledge can also be
classified on the basis of the following forms: ”structured” (available in data-
base), ”semi-structured” (generally available in Web sites: HTML pages, XML
documents, etc.) and ”unstructured” (available as textual documents: project
documents, procedures, white papers, templates, etc.). More recently, new im-
portance has been given to social processes and to the communities of practice
as sources of knowledge. Through communities of practice the individual could
learn from the community, but also the same community can innovate and cre-
ate new knowledge. ”Community is the social dimension of the practice”, which
is the ideal context for creating knowledge, a virtual space where the individu-
als learn, putting personal experiences and social competences in relation and
having the possibility of acting on the same social competences through sharing
[7]. According to this vision, organizations must become a community of com-
munities, offering spaces for the creation of autonomous communities, that are
connected one another . The different types of KM solutions are related to the
image of the corresponding social interactions in KM processes. According to this
consideration, technological systems for KM can be classified and inserted in a
scheme according to the adopted social model. Therefore, on one hand we have
centralized systems that are practically identified with the Enterprise Knowl-
edge Portal (EKP) and, on the other hand, we have distributed KM systems. In
this paper we describe K-link, a JXTA based P2P system coherent with the vi-
sion of distributed knowledge management (DKM). K-link provide users with an
environment allowing a work activities management in a semantic way. For ex-
ample projects users are involved in, are in K-link represented by workspaces. A
workspace is a community of peers endowed with a set of tools (such a Calendar,
File Sharing, etc.) enabling distributed and real-time interactions. For example
the File Sharing tool allows users to search documents inside a workspace on
a semantic basis (selecting an ontology concept and forwarding the query to
the network, all the documents classified by the workspace members under that
concept will be given back). Indeed, P2P systems seem particularly suitable to
implement the two core principles of DKM, namely the principle of autonomy
- communities of knowledge should be granted the highest possible degree of
semantic autonomy to manage their local knowledge - and the principle of co-
ordination - the collaboration between autonomous entities must be achieved
through a process of semantic coordination, rather than through a process of
semantic homogenization-. In K-link, each knowledge entity (or Knowledge Link
Node - KLN) is represented by a peer, and the two principles mentioned above
are implemented in a direct way:

88 G. Pirro’, D. Talia, and M. Ruffolo

– each KLN (peer) is endowed with a set of services for creating and organizing
its own local knowledge (autonomy), and

– ii) defining cooperating structures (peer groups) and an ad hoc ontology
framework in order to achieve semantic interoperability (e.g., classifying and
searching documents on a semantic basis).

The paper is organized as follows. Section 2 presents the K-link architecture
and its implementation in JXTA explaining how it provides a useful support
to DKM. Section 3 presents the ontology framework supporting the system,
developed by a Disjunctive Programming Language (DLP+). Section 4 presents
the implemented system. Finally,sections 5 and 6 outline some related works in
the DKM field, draw some conclusions and sketch future work.

2 K-link Architecture

K-link is a P2P system which allows a collection of subjects (individuals, groups,
or whole organizations) to manage and search for knowledge on a semantic basis
through the ontology support. Because of its decentralized model, K-link doesn’t
impose a single model to classify knowledge. Furthermore, through K-link it is
possible to integrate knowledge stored in pre-existing systems (such as servers,
knowledge bases, etc.) if based on our ontology framework. In the next sections
we describe the K-link high-layer and low-layer architecture. For both layers we
analyze the main components and the services that allow the system to support
users and communities in managing distributed organizational knowledge. The
following figure shows the system architecture.

K-link

Low Layer

Architecture

K-link architecture (JXTA based)

JXTA Core

Endpoint Messages Peer Discovery Protocol Peer Resolver Protocol

Peer Information Protocol

Pipe Binding Protocol

Peer Membership Protocol

Peer Endpoint Protocol

Seeker

Communication Service

Connection ServiceK-link Advertisement

Presence Service

K-Group Advertisement

K-link Group

Profiling Service

Pipe Advertisement

Peer Peer Group

Provider Ontology Engineer
K-link

High Layer

Architecture

Fig. 1. K-link low level architecture

2.1 K-link Low-Level Architecture

The K-link low-layer architecture contains services built by the JXTA frame-
work. JXTA (http://www.jxta.org) is a set of protocols, through which P2P
ad-hoc networks can be carried out. JXTA also allows the autonomous peer

K-link : A Peer-to-Peer Solution for Organizational Knowledge Management 89

group creation. By the peer group abstraction, the communities of practice can
be formed. In a specific group it will be possible to create a set of services only
for the members of the group. Moreover, this framework allows various device set
(server, PC, PDA, etc.) to communicate within a peer group independently from
the transport protocol. The common format for exchanging information inside
JXTA is the advertisement. An Advertisement is an XML document contain-
ing information about each network resource (peer, peer group, services, etc.).
A certain resource (to be used), must be first ”announced” to the network. In
JXTA there is a wide number of protocols; each of them devoted to an activity.
For example, the Pipe Binding Protocol handles the creation of pipes, namely
communications channels. Furthermore, the Peer Rendezvous Protocol handles
the message exchanging within the network of JXTA rendezvous peers . A Ren-
dezvous peer, or ”super peer”, represents a generic peer provided with message
routing capabilities. From this point of view, JXTA allows to overcome the limits
of pure P2P architectures.

2.2 K-link Services

K-link services created on the top of the JXTA architecture, allow KLN to
implement all the requirements of DKM as discussed before. In the following we
give a brief description of each service.

– Profiling Service: This service is close in meaning with the profile concept.
A profile represents a semantic description of each KLN within a K-link
group. Each profile contains useful information about the KLN (name, email
address, skills, etc.). Moreover, the Profiling Service guarantees the profile
consistency with respect to any change. If any change is detected the profile
will be republished within the group.

– Connection Service: The Connection Service is responsible for all the
operations concerning the JXTA network setting up. This service creates
the super group K-link within the JXTA NetPeerGroup. This service also
deals with the creation of the other subgroup of the super group. All the
services (Discovery Service, Rendezvous Service etc.) will be inherited from
this group. Moreover, this service provides all the operations for joining the
K-link groups.

– Communication Service: The Communication Service deals with the in-
formation exchanging operations through the Jnutella protocol. Jnutella is
a JXTA-based implementation of Gnutella. It is composed by a set of de-
scriptors designed using the JXTA messages. Moreover, Jnutella adds two
new kinds of descriptors (i.e. profile request and profile reply) for exchanging
profile information. Jnutella messages are not forwarded to all KLNs, but
only to a subset of those (contained in a buddylist) the KLN has chosen to
deal with. In this way, the network traffic is reduced and messages will not
propagate blindly.

90 G. Pirro’, D. Talia, and M. Ruffolo

– Presence service: The Presence Service provides a mechanism for exchang-
ing presence information. Through this service, each KLN lookups the cur-
rent status of the other KLNs (contained in its buddylist). In fact, this service
on a regular basis manages message exchanging in a ping/pong style.

2.3 K-link High-Level Architecture

This layer implements the following K-link roles: seeker, provider and ontology
engineer. The architecture of each KLN is shown in figure 2.

Lucene
index

Query Solver

Conceptual Lexical

Lucene
Index

Ontology
editor

DLP+

Seeker

GUI

Lexical
Query

Conceptual
Query

Discovery

Concept File Path

Concept File Path

Semantic Table

Concept File Path

Concept File Path

Hash Md5 File Path

Hash Md5 File Path

Content List

Hash Md5 File Path

Hash Md5 File Path

Document
Repository

Ontology
Repository

Ontology Engineer

Provider

Fig. 2. K-link high level architecture

2.4 K-link Node

A K-link node (KLN) represents a knowledge entity that able to produce, store
and exchange knowledge. In general, a KLN could be a PC, a server, or also
a community of entities that exchange information in a P2P way. A KLN will
be able to play the role of Seeker when it searches for knowledge, or the role of
Provider when it publishes its own knowledge. Furthermore, a third role (ontol-
ogy engineer) leads the processes of ontology personalization. In K-link system
ontologies are represented by DLP+ [9]. In the following we illustrate the main
components of this layer.

2.5 K-link Main Components

– Document Repository: A Document Repository is the place where each
KLN stores its own knowledge. Thus, this repository can be viewed as a
private space in which each KLN holds its own documents and data accord-
ing to a local scheme (e.g., a file system, a database, etc.). This repository
contains knowledge that through other system components will be anno-
tated, indexed, and shared. It is important to guarantee the consistence of

K-link : A Peer-to-Peer Solution for Organizational Knowledge Management 91

that repository since it will assure the ”quality” of the answers to the others
KLNs.

– Ontology Repository: This repository contains the DLP+ implementa-
tion of the ontology framework described in section 3. The DLP+ ontology
language is an extension of the Disjunctive Logic Programming (DLP) that
extends Datalog allowing disjunction in the rules’ head. The presence of dis-
junction in the heads of the rules makes DLP inherently non-monotonic.
The ontology repository contains also the contexts (i.e. personal concepts
networks) created from the Upper Ontology. A context represents a vision
about a piece of knowledge. From this point of view, the application gives
autonomy to a user to specialize its context as her/him prefers. The only tie
is that the basic concept (the root of the hierarchy) must be a core ontology
concept. Documents stored in the document repository will be semantically
annotated to the context concepts, allowing to assign a semantic meaning to
their contents.

– Lucene Index: This repository contains the Lucene index allowing to search
for information inside user documents. This index is permanently stored on
the disk. Nevertheless, Lucene (http://lucene.apache.org) doesn’t provide
any mechanism for checking index consistency. In fact, in case of a document
removal or changing the index should be updated manually. In the K-link
system the index consistency is assured through a cyclical control checking
of the contained documents.

– Content List: This list contains pairs (Hash Md5, File Path) used for man-
aging the Lucene index consistency. Through the cyclical control of such list,
the system can know which files currently owns. The file paths are obtained
from the document repository, while md5 hashes are obtained trough the
JXTA API. From the modifications of the Md5 value, file changes will be
noticed and the system can proceed to the new indexization or deletion inside
the index.

– Semantic Table: This table stores permanently the file-to-concepts asso-
ciations on disk as pairs (Concept Id, File Path). In the current K-link im-
plementation it is possible to associate one file to more than one concept
by creating different views for it. The role played by the semantic table is
essential for conceptual querying. In fact, by specifying the name of a con-
cept and issuing a remote query, all the contents classified from other KLNs
under that concept will be returned.

2.6 K-link Main Roles

Each KLN can play three roles: seeker, provider and ontology engineer. Here we
describe them in detail.

1. Seeker. A KLN plays the seeker role when it searches for knowledge in-
side a group. Moreover, the Seeker role includes the mechanisms allowing
the discover of both KLNs and K-link groups. A KLN can issue two kinds
of query (conceptual and keyword based) forwarding requests to its ”bud-
dylist” that contains the others KLNs chosen to deal with. For each query, a

92 G. Pirro’, D. Talia, and M. Ruffolo

handling process will be activated. with the aim to gather the responses and
to send back them. The seeker component of the receiver can group these
results on query type and KLN sender basis. When the results are shown,
a KLN can activate a download request handled by the JXTA CMS service
(http://cms.jxta.org).

2. Provider. In the Provider role, a KLN should deal with queries coming
from other KLNs. Also in this case, for each query (identified a timestamp)
a handling process will be activated. This process queries the local indexes
for the requested information. If any result is found, the KLN sends back
replies to the remote peers. The handling process will be different depending
on the query type.
– Keyword query: for this type of query, the KLN looks at its local Lucene

index, obtaining the documents containing the requested keyword. The
results composed by pairs (file path, content id), will be sent back to the
requester and then locally handled through its query handler process.
The content id allows the requester peer to identify the last file version.

– Conceptual query: When a conceptual query is issued, a KLN in the
provider role will check its own semantic table giving back all the docu-
ments associated to the concept expressed in the query. Also in this case
it is important to send back the content id in order to obtain the last
file version.

3. Ontology engineer. In the Ontology Engineer role, a KLN peer can deal
with the context creation operations. A context represents a proper view on
a part of the domain of interest. In fact, each KLN can specialize this part
of knowledge on a personal basis rising from real use cases. Moreover, this
role deals with all the core ontology modification operations. In this version
of K-link, those operations are carried out manually, but in a future release
they will be handled through a distributed mechanism.

3 The K-link Ontology Scenario

Recently KM tools using ontologies as semantic support for describing contents
have been designed. Mainly two classes of tools can be identified:

– Tools that through standardized ontologies aim at working out all the com-
prehension problems deriving from their use in dynamic environments.

– Tools that don’t accept any layer of standardization, and allow users to de-
fine ontologies (in this case would be more appropriate to speak of contexts)
according to the needs and the abilities of everyone. In this case, all the
processes of meaning negotiation are totally trusted to automatic mecha-
nisms with no (or almost) involvement from the users.

In an organizational environment both those classes of tools cannot be properly
used. An intermediate solution provided with a time-changing basic ontology
could represent an effective trade-off between the demand of common models

K-link : A Peer-to-Peer Solution for Organizational Knowledge Management 93

and the demand of individuals (people or organizations) of defining local con-
cepts in their models. Our approach, through the basic ontology and the user’s
feedbacks tries to build a shared conceptualization. Moreover, K-link goes be-
yond the classification of information, taking into account all the resources and
the cognitive legacy of an organization (business processes, human resources,
etc.) through their accurate definition. Through an intensive use of Ontologies,
the work of organizing, understanding and looking for information will result
more accurate, simple and efficient. The proposed ontology-based framework [8]
is organized as in two layer as shown in figure 3. The first ontology layer con-
tains the Upper Ontology (UO) that contains concepts characterizing the orga-
nizational background knowledge. These concepts are used for annotating Core
Organizational Knowledge Entities (COKE) contained in the second ontology
layer. Our framework gives an abstract representation of COKE allowing han-
dling of semantic knowledge objects (e.g. semantic search and retrieval, semantic
process management, etc.). In particular, the framework provides a uniform ab-
stract representation of static (concepts) and dynamic (processes) organizational
knowledge handled by users. All peers are initially provided with this framework
in which the upper ontology contains basic organizational knowledge. Each peer
can extend the upper ontology with own relevant concepts. In the following the
framework structure is explained more in detail.

3.1 The Upper Ontology

The UO defines concepts characterizing the typical organizational knowledge
background. It specifies explicitly organizational topic (i.e. declarative knowledge
concerning the concepts characterizing an application domain). For example an
IT enterprise background is founded on concepts coming from computer science
such as databases, programming languages, architectures, etc. The UO provides
COKE ontologies with concepts to formally annotate their contents.

KLNKLN

KLN

KLNKLN

Service OntologyBusiness Pr ocess Ontology Human resource OntologyKnowledge Object Ontology

Upper Ontology

Fig. 3. K-link ontology framework

94 G. Pirro’, D. Talia, and M. Ruffolo

3.2 The COKE Ontologies

COKE Ontologies contain the formal representation of human resources and
their organization in groups, processes and their activities, knowledge objects
constituting elements produced or used in business processes, services in term
of instruments used during business process execution. The Human Resource
Ontology defines individuals working in the organization (knowledge workers)
and social groups they are involved in. For each individual, a profile in term of
skills, topics of interest, organizational role, group membership is defined. For
each group (community of practice, project team, organizational group, etc.),
a group profile in term of topics of interest, required services is defined. The
Business Processes Ontology contains procedural knowledge related to the
managerial and operational processes. The business process ontology exploits
an interesting capability of DLP+ language allowing the expression of taxo-
nomic and non-taxonomic relations between classes enabling the representation
of process meta-model, process schemas and process instances. Therefore, each
process is described in terms of a three layer structure. The meta-model layer
allows the definition of process elements (i.e. activities, sub-processes, transition
states and conditions, involved actors, treated topics). The schema layer allows
the definition of a single process in term of process elements. The instance layer
allows the definition and acquisition of process instances. The Knowledge Ob-
jects Ontology maps the structure of logical objects (e. g. textual documents,
web pages, process activities, blog and chat sessions, e-mail, etc.). These are
used in the business processes and handled by the human resources through ser-
vices. Semantic knowledge objects management and handling (e.g. search and
retrieval) is facilitated by the annotation on the UO concepts. The Services
Ontology identifies the tools by which knowledge objects are created, acquired,
stored and retrieved. The execution of a query on the UO can be executed using
a specific tool able to retrieve all the elements related with a specific concept.
Element can be filtered to obtain a specific COKE related to the query. For
example, a query result can contain info about people knowing a given concept
or knowledge objects related to some concepts.

4 K-link in a Nutshell

Figure 4 shows the main GUI from which a user can create new workspaces,
open existing workspaces, deleting existing workspaces, and also deal with all
the Personal Knowledge Management tasks (local document indexing, semantic
and full text search, etc.). Furthermore is also possible to invite contacts to the
created workspaces.

The Figure 4 shows also the contacts view trough which is possible to search
and add new contact to our contact list. Moreover from the contact view is also
possible to start a one to one chat session.

Figure 5 shows the K-link Personal Knowledge Management environment.
From the Personal Knowledge Management GUI is possible to query local

knowledge. Currently there are two kinds of queries, the first (keyword based)

K-link : A Peer-to-Peer Solution for Organizational Knowledge Management 95

Fig. 4. K-link main GUI

Fig. 5. K-link Personal Knowledge Management GUI

uses the Lucene index and show the results in a JTable as can be viewed in the left
side of the figure. From this table is possible to open directly the content. Is also
possible to associate file to concepts by dragging the file on the left hand side to
the ontology representation in the center. The figure shows also the the semantic
table represented also in this case by a JTable. From this table is possible to erase
semantic associations and to check the semantic table consistency with respect
to the ontology (e.g in the case of a concept deletion).

5 Related Works

To the best of our knowledge, recently only two P2P KM systems have been
proposed: SWAP and KEEx. SWAP (Semantic Web and Peer to Peer) is a
research project started in 2002, aiming at combining ontologies and P2P for
KM purposes. SWAP allows local KM by a component called LR (Local node
repository), which gathers knowledge from several source and represents it in
RDF-Schema. Moreover, SWAP allows to search for knowledge using a language
called SeRQL an evolution of RQL [10]. KEEx [7] is a P2P architecture that
aims to combine both semantic and P2P technologies. This system implemented
in JXTA allows a set of K-nodes to exchange information on a semantic basis.

96 G. Pirro’, D. Talia, and M. Ruffolo

Semantic in KEEx is achieved by the notion of context. A context in KEEx,
represents a personal point of view about reality and is represented using a pro-
prietary language called CTXML [12]. KEEx lets the user completely free about
context creation without providing him with any organizational background.
For the reasons discussed in section 3 we argue that although this approach is
innovative, due to the presence of an automatic mapping algorithm which aim
is to find correspondences between concepts present in different contexts, this
complete autonomy could turn into isolation.

6 Conclusions and Research Issues

In this paper we argued that technological and social architectures must be con-
sistent for supporting KM processes. Along the paper sections we discussed as
P2P systems naturally fulfill this requirement. We designed a P2P architecture
called K-link and implemented it by using JXTA, Lucene and other technologies.
K-link addresses all the main needs emerging in an organizational distributed
KM scenario through an ad-hoc ontology framework. Nevertheless, a number of
research issues related to the mapping of the distributed knowledge into techno-
logical requirements emerged. Two of them are:

– Mapping algorithm: In order to solve the semantic interoperability problem
we are designing an algorithm that aims at discovering the potential semantic
relations among concepts in different contexts in a semi-automatic way. This
algorithm uses all the expressiveness of the DLP+ and Wordnet as source
of knowledge about the word.

– Automatic classifier: Based on the rules definition related to the concepts
of Upper Ontology we are developing a semiautomatic classification system
supported by the Hylex [11] system.

References

1. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. How Japanese Com-
panies Create the Dynamics of Innovation. Oxford University Press, New York,
USA (1995)

2. Taylor, F.W.: The Principles of Scientific Management. Harper and Row, New
York, USA (1911)

3. Simon, H.A.: Theories of bounded rationality. In: McGuire, C.B., Radner, R. (eds.)
Decision and organization: A volume in honor of Jacob Marschak (Ch. 8), Ams-
terdam, Olanda (1972)

4. Polanyi, M.: The tacit dimension. Routledge and Kegan Paul, London, England
(1966)

5. Polanyi, M.: Tacit Knowledge. Ch.7 In: Prusak, L. (ed.) in Knowledge in Organi-
zations, Butterworth-Heinemann, Boston, USA (1997)

6. Nonaka, I.: A Dynamic Theory of Organizational Knowledge Creation. In: Orga-
nization Science, vol. 5 (1994)

K-link : A Peer-to-Peer Solution for Organizational Knowledge Management 97

7. Bonifacio, M., Nori, M., Bouquet, P., Busetta, P., Danieli, A., Don, A., Mameli,
G.: KEEx: A Peer-to-Peer Tool for Distributed Knowledge Management. In: Proc.
P2PKM 2004, Boston, MA (2004)

8. Ruffolo, M., Gualtieri, A.: An Ontology-Based Framework for Representing Orga-
nizational Knowledge. In: Proc. I-Know - International Conference on Knowledge
Management, Graz, Austria (June 2005)

9. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A Deductive System for
Non-Monotonic Reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS, vol. 1265, pp. 364–375. Springer, Heidelberg (1997)

10. SWAP:Ontology-based Knowledge Management with Peer-to-Peer Technology
Marc Ehrig Christoph Tempich, Jeen Broekstra Frank van Harmelen, Marta Sabou,
Ronny Siebes, Steffen Staab, Heiner Stuckenschmidt

11. Ruffolo, M., Leone, N., Manna, M., Sacc, D., Zavatto, A.: Esploiting ASP for
Semantic Information Extraction. In: The ASP 2005 workshop - Answer Set Pro-
gramming: Advances in Theory and Implementation, University of Bath, Bath,
UK, July 27th–29th (2005)

12. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach
and an application. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 130–145. Springer, Heidelberg (2003)

An Analysis of Interest-Community Facilitated
Peer-to-Peer Search

Elth Ogston

Vrije Universiteit Amsterdam
De Boelelaan 1081A, 1081 HV, Amsterdam, The Netherlands

Abstract. We study the effect of semantic overlay structure on the performance
of decentralized search. Semantic overlays create communities of nodes that
share particular interests. In peer-to-peer systems these communities can be de-
signed to improve the recall of search algorithms. Such communities also play a
role in balancing load between agents. An examination of these two performance
metrics on some basic semantic overlay topologies shows that the choice of the
best decentralized search algorithm can be influenced by differing design goals.
We present an extensive experimental evaluation using data sets from eDonkey
and Movielens. We find that, in general, these data sets do not exhibit obvious se-
mantic clusters of nodes. For this reason, using a best-neighbors overlay, in which
nodes individually choose their neighbors, to implement search produces better
recall values than using an overlay that specifically clusters nodes into groups.
Using best-neighbors overlays, on the other hand, can lead to highly unbalanced
load distributions, a problem avoided in clustered overlays. We also find that for-
warding search queries to “friends” in best-neighbors overlays does little to im-
prove recall while further unbalancing load distributions.

1 Introduction

At first glance, peer-to-peer systems and decentralized multi-agent systems appear to
be the same subject with different names. “Peers” in the former case may be renamed
“autonomous agents” in the latter, but the underlying issues associated with decen-
tralization are similar in each type of system. For instance, the problem of optimizing
search, whether for files or for joint-task partners, is about how to organize information.
However, although the basic problems encountered in decentralized systems may often
be identical, the differing objectives of the two system types can have a large influence
on appropriate design choices.

We use the example of improving decentralized search by creating interest commu-
nities among nodes to explore the concept of how system design can depend on system
objectives. Search efficiency in unstructured peer-to-peer systems is often improved by
making use of a semantic overlay, a virtual network in which a node’s location is based
on its semantic similarity to other nodes. This idea, of creating virtual organizations of
similar nodes to limit the scope of tasks that might otherwise need to be carried out
over the entire set of nodes, is common to both peer-to-peer and multi-agent systems.
The type of semantic overlay preferred in each system, however, differs. Multi-agent
systems research is concerned with decentralizing coordination among complex au-
tonomous agents. Multi-agent systems thus often favor creating well-defined groups, or

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 98–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 99

clusters, of nodes, allowing for a high degree of cooperation among agents in a group.
Peer-to-peer systems research, on the other hand, is focused on designing simple decen-
tralized algorithms among peers with minimal abilities. Peer-to-peer systems therefore
tend to favor looser, more easily created organizations in which each node maintains a
number of neighbors, and neighbors usually have other neighbors in common, but no
specific group boundaries are defined.

Both of these approaches, creating interest neighborhoods and specific interest clus-
ters are valid methods of organizing a decentralized search network. Which is better
for a particular application is, however, not well understood. One reason for this is that
search performance in such networks depends on how suited the overlay structure is to
the actual semantic structure of the data being searched. To investigate further the ex-
act difference between the two approaches, we compare the theoretical performance of
several basic search methods on typical file-sharing data sets taken from the eDonkey
[1] and Movielens [2] systems.

Three common forms of semantic overlay search are compared: (1) direct-neighbor
search in a best-neighbors overlay with large neighbor caches, (2) friends-of-friends
limited-radius flooding search in a best-neighbors overlay with small neighbor caches,
and (3) group-based search in a clustered overlay. The basic case where there is no
known item classification that can be used to guide the semantic overlay structure is
used to test the three overlay search approaches. We consider two measures: an estimate
of the hit rate that nodes would achieve for searches in their overlay neighborhood, and
an estimate of the query load that would be seen by each node in comparison to the
number of queries it makes itself.

For the data sets studied, we find that, although clusters that perform better than
random groupings can be devised, obvious semantic clusters of nodes do not exist.
Therefore, search methods based on the idea that nodes can be classified do not always
improve search recall as much as could be hoped. A simple search of a node’s best
neighbors (overlay approach 1) produces the best hit rates. However, we also observed
that because the distribution of files over the nodes, as well as the distribution of the
popularity of files, is highly uneven, best-neighbors networks can result in fairly imbal-
anced query-load distributions. A small number of nodes may contribute much more to
the system than they recieve, and a large percentage of nodes can contribute very little
while benefiting from the system. Although this may be acceptable in peer-to-peer file
sharing, such imbalances may be less acceptable in multi-agent systems where replying
to a query for a service often involves more resources than those required to simply
transfer a file. Clustered-overlay based search (overlay approach 3) removes the query-
load distribution problem, but only produces hit rates comparable to best-neighbors
search (overlay approach 1) when item replication is high. Friends-of-friends search
(overlay approach 2) appears to be ill suited for both of the data sets studied because
a node’s neighbor’s neighbors do not tend to contribute much to improving hit rates,
while this form of routing further unbalances query loads

2 Related Work

Search in peer-to-peer systems, at a bird’s eye level, can be seen as an attempt to
find items in a collection of data spread out over a collection of nodes. Since strict

100 E. Ogston

peer-to-peer systems exclude the use of central directories, optimizing search involves
organizing the placement of data. In the absence of a name space that can be used as
the basis for a placement scheme, data content, or “semantics”’ can used. Items that are
determined to have similar content should thus be grouped together.

One way of using semantics is to directly organize the placement of data items on
nodes, either by moving or replicating items [3], or by creating indices to guide query
routing [4]. If, however, the nodes themselves can be categorized, for instance due to
the behavior or preferences of the users who own them, semantic organizations built
between nodes should also reflect an organization of the data.

There are a number of systems that have explored rearranging a peer-to-peer overlay
to reflect the semantic similarity of nodes. In general they consider nodes to be similar
based on the co-placement of items. Node similarity is measured either directly by
examining the contents of nodes, or indirectly by considering which nodes answer each
other’s queries. Two basic forms of overlay arrangement can be created based on these
similarities. First, links can be placed between nodes based on their pairwise similarity
[5,6,7,8]. Second, an overlay can be built in which an attempt is made to divide nodes
into groups [9,10,11,12,13].

In a best-neighbors overlay each node maintains a list of the other nodes that it be-
lieves are most similar to itself. Search queries are first made to these neighbors since
they are more likely to be able to provide replies than an average node. Queries are
often also forward to neighbor’s neighbors on the assumption that these nodes will
also exhibit higher than average similarity to the requester. Usually, to maintain search
coverage, queries that fail in the best-neighbors overlay are directed to an alternative
non-semantic overlay. Sripanidkulchai et al. [6] propose adding “interest-based short-
cuts” between nodes. They perform experiments that show that shortcuts based on ob-
serving network traffic in a Gnutella-like random network improve the performance
of query-forwarding searches. They also observe that with shortcuts queries are often
resolved in a single hop. Cholvi et al. [5] study a similar system in which peers main-
tain links to “acquaintances”. They focus on solutions to the load-balancing problem
that arises when some peers are more popular acquaintances than others. Yang et al.
[8] consider “non-forwarding search”, in which peers directly query other peers chosen
according to some policy. Their “most results” policy, which they conclude produces
the best results, is a measure of the semantic similarity of peers. They also note issues
with load-balancing. Voulgaris and Van Steen [7] explore the active creation of seman-
tic relationships between peers. They propose to gossip information among peers to
allow for more complex similarity comparisons, rather than basing semantic links on
observations of query traffic.

An alternative to nodes maintaining purely independent similar-neighbors caches is
to create an overlay that defines groups of similar nodes. Nodes belong to one or more
of these groups, and queries are sent to the most appropriate group for their subject. The
Associative Overlay design in [9] defines a set of “guide rules”, or groups of peers that
satisfy some predicate. Predicates based on “possession rules”, which ask if a peer con-
tains a particular item, are studied. Nodes classify their queries based on which guide
rules have provided answers in the past. In [10] nodes are grouped in “Semantic Overlay
Networks” (SONs) corresponding to categories in a predefined classification hierarchy.

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 101

This classification hierarchy determines in which SON a query should be made. The
notion of grouping similar nodes is also used to optimize super-peer networks [12,11].
Super-peers are nodes with extra capabilities that act as servers to sets of weak peers.
Such networks can be designed so that each super-peer groups together a set of similar
weaker peers, thus limiting the set of super-peers to which a query must be forwarded.
In [12] these groups are determined by a pre-defined topic ontology or set of query
characteristics. In [11] weak peers associate themselves with the super-peers that have
answered their past queries. The abstract problem of clustering data in a peer-to-peer
manner is considered in [13].

The networks structures examined in this study represent the basic methods of re-
arranging overlays explored in the above system designs. Best-neighbors overlays rep-
resent designs in which only the pairwise semantic relationship between nodes is con-
sidered when building the overlay. We consider direct-neighbor, or one hop search, and
“friends-of-friends” or multi-hop search on this form of network. A clustered-overlay
structure tests the assumption that distinct semantic groups of nodes, which define the
best set of nodes in which to perform a search, can be identified. For these network
structures we examine the two main issues identified in previous work: the query hit
rate obtained in the semantic overlay and load-balancing among peers.

3 Experimental Setup and Methodology

As the literature review above shows, there are several ways of performing search based
on semantic overlays, and there are good arguments for using each one. Which is best
for a given data set is, however, unclear. The purpose of this work is to do some initial
investigation into guidelines for choosing a form of semantic search when building
a peer-to-peer system. Because many of the systems proposed so far are still in the
development phase, rather than comparing particular implementations we choose to
study the underlying properties of several abstract versions of semantic overlay search.
To make this comparison, we estimate the theoretically best performance that could be
obtained by each on a given data set.

3.1 Overlay Structures and Search Methods

Semantic overlays can be divided into two general forms: those where nodes are po-
sitioned based entirely on individual information, and those where some form of local
coordination is used to discover node groupings. We shall call the first of these best-
neighbors networks. In a best-neighbors network nodes are modeled as each having
an individual neighbor cache, which stores links to a set of nodes, chosen according
to some distance function. Nodes each individually fill their caches with the neigh-
bors that are the best for their purposes. In the simplest form, a node’s search neigh-
borhood consists of the nodes in its neighbor cache. We will call this form of search
direct best-neighbors search. Alternatively, a node can expand its search space by ask-
ing its neighbors to forward a query on to their neighbors, or “friends”. We will call
this friends-of-friends search, parameterized by a radius variable, r, which defines how
many times each query will be forwarded.

102 E. Ogston

Best-neighbors networks are simple to build since they require no joint decision
making. They do not, however, necessarily result in clearly defined groups of nodes.
This is due to a chaining problem; Node A may perceive itself to be similar to Node
B, and Node B may think itself similar to Node C, but this does not always mean that
Nodes A and C are similar to each other. Thus for group operations, such as search, it
is difficult to determine where the boundaries of a group should be placed. In addition,
there is the risk that some nodes will be vastly more popular as neighbors than others,
creating an unfair query load distribution. These problem becomes especially prevalent
for high dimensional data.

A solution to this problem is to build a more complex form of overlay network in
which nodes are divided into clusters, based on some local inter-node agreement on
where to place group boundaries. We shall call this a clustered-overlay network, and
consider a node’s search neighborhood in this network to be all the members of its clus-
ter. Clustered-overlays balance the search load by limiting how many nodes can have
any particular node in their search neighborhood. This form of search will, however,
only be effective if a good clustering of the nodes exists, and can be identified.

3.2 Experimental Design

When evaluating decentralized search algorithms the most important factor is that they
find the requested data. Considering systems in which evaluating queries can be costly,
such as multi-agent systems, along with peer-to-peer systems places a further priority of
balancing query loads between peers. In the following experiments we compare abstract
search methods by analyzing their expected performance on data measured from actual
systems. In order to make this comparison we first need to devise measures that estimate
how often queries can be expected to find the data they require and how evenly query
load is divided between nodes.

Unfortunately, the data sets that have been collected to date on peer-to-peer search
give only a partial view of the data that might be available in a real system (see Section
3.3). For the data sets we study, only the file replicas stored in nodes at a given time are
recorded. A set of queries made by those nodes is unavailable. It is fairly reasonable
to assume that file replicas are the result of earlier queries. Thus in other work such
data sets are divided into a training set of replicas that are actually placed in the nodes
and a test set of replicas which are used to represent queries. Given the already sparse
nature of the data sets, however, experimental methods that further reduce the file sets,
making similarity less apparent and files harder to find, are probably too pessimistic.
We instead opt to build our semantic overlays using all of the data, and to measure
average search hit rates and loads for all nodes in these overlays. Overlays are built so
as to maximize hit rates, thus giving us estimates of the best possible performance that
a search implementation could achieve on the given data sets.

Best-neighbors overlays are built by placing the nodes with which a node has the
most file replicas in common in its neighbor cache. If a node shares the same number
of replicas with two other nodes, the one with the smaller file cache is considered to be
better. Neighbors are chosen independently of each other, no account is taken of files
already available to a node through previously chosen neighbors. Note that neighbor
caches are not necessarily filled. For large neighbor cache sizes, nodes can run out

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 103

of neighbors with which they have any files at all in common. Clustered-overlays are
built using a clustering algorithm to divide nodes into groups. Clusterings are based
on the same measure of similarity between nodes, the number of replicas they have
in common, as used for the best-neighbors overlays. The exact method of determining
clusters is discussed in Section 4.3.

For a given overlay structure we define the average hit rate for a search method
to be the number of replicas a node has in common with any other node in its search
neighborhood divided by the number of replicas a node holds in its item cache, averaged
over all the nodes. This measure is roughly equivalent to treating a single replica as the
test set for search and averaging hit rates over all possible test sets, thus giving the
overall fraction of files that can be found in an overlay.

We define the load ratio for a node, under a search method, to be the number of
replicas a node potentially has to serve divided by the number of useful replicas a node
finds in its search neighborhood. Nodes can often find several copies of an item for
which they are searching. How often a particular replica is downloaded thus depends
on how popular it is, and the method nodes use for choosing which of several replicas to
download. Rather than defining which copy a node will choose when estimating query
loads, we simply consider that all queries received for items nodes hold replicas of
might potentially need to be answered. Thus we measure the highest possible number
of replicas a node may have to serve. This is in most cases an overestimation, though
it does give a measure of a system’s usefulness to a node since the more copies of an
item are available, the higher a download rate can be achieved by splitting downloads,
and the more reliable the system is as a “backup” of that item. If we simply use the
potential number of replicas served as a measure of the load of each node, we find that,
fairly obviously, nodes with more items, and more popular items see the highest loads.
It is fairly reasonable to assume, however, that nodes with larger item caches and more
popular items make more use of the system, and are thus willing to contribute more.
We therefore divide the load a node potentially sees by the load it potentially creates.
We do not consider the cost of providing negative replies to queries, on the assumption
that this will be small compared to the cost of serving file downloads.

3.3 Data Sets

The data sets we study consist of a set of N nodes and a set of F unique files, or
items. Each node corresponds to a user and has a file cache which contains a set of
replicas of files from F , in which the user is interested. We consider two data sets, one
of measurements from an eDonkey peer-to-peer file sharing system, the second of user
ratings of movies from the Movielens recommendation system.

The eDonkey data set is presented in [1] by Le Fessant et al. It was obtained by
crawling the eDonkey network during a week in November 2003, recording the actual
file cache contents of nodes. The full dat set contains data for 37,044 nodes (11,872 with
1 or more file) and 923,718 files. Le Fessant et al. present an analysis of file replication
and sharing distributions and measure node and file correlations for this data set. They
find that there is a significant amount of correlation between the file caches of certain
nodes, showing that semantically-similar nodes exist.

104 E. Ogston

Since in this study we are only interested in comparing semantic search networks,
we create a subset of the eDonkey data that contains only the nodes and files that can
contribute to semantic similarity and successful searches. We thus remove all of the files
for which there is only one replica, and all of the nodes that subsequently do not contain
any files. This gives us a data set in which, in the best case, all nodes can find a replica
of any file they hold in their cache. This refined data set has 11,545 nodes and 104,722
files. Nodes have between 1 and 1059 files in their file caches. Files have between 2 and
344 replicas.

The eDonkey data sets contains a large number of nodes with very small file caches,
and a large number of files with very few replicas. These factors together make search
difficult; nodes with small file caches may not be worth querying and the many unpop-
ular files will be hard to find. In an ideal file sharing network all nodes would contribute
files and even unpopular files would have several replicas. It is fairly reasonable to guess
that in the eDonkey system users are actually interested in more files than appear in this
data set. The low number of files measured is probably partly due to the short period
over which the data was gathered, and to the fact that many users could be removing
files from their eDonkey caches once they have been downloaded. In the future it is
hoped that incentive mechanisms can be used to fix this weakness. We thus also study a
second data set, taken from the Movielens recommendation system [2]. Since this data
set comes from an internal measurements of a successful recommendation system, built
on the premise that users with similar tastes will rate movies in similar ways, we can
assume that a useful amount of semantic similarity exists between nodes.

We consider a scenario in which a user’s files consist of the movies he has rated with
4 or 5 stars in the Movielens data set, thus assuming that each user will keep and share
recordings of his favorite movies. As with the eDonkey data set we remove all movies
that appear only once, and all users that subsequently store no movies. The original
Movielens data set contains ratings for 3592 movies made by 6039 users, each of which
rated at least 20 movies. The subset we study contains 3381 movies (items/files) and
6038 users (nodes). Nodes contain replicas of between 1 and 1433 movies. Files are
replicated on between 2 and 2853 nodes. Compared to the eDonkey data, these nodes
share more files, and files are more widely replicated. As in the eDonkey data, most
nodes have smaller numbers of files, and most files have smaller numbers of replicas.

4 Experimental Results

4.1 Hit Rates

Figure 1 compares average hit rates for each of the search methods. The x-axes give
the search neighborhood size, s, and y-axes give the total fraction of items found over
all nodes. For direct best-neighbors search s is the size of the neighbor cache, which
may or may not be filled, depending on how many potential neighbors a node has.
For friends-of-friends search (fof) points are plotted for a query forwarding radius of
between 1 and 4. Results are plotted for neighbor cache sizes of 3, 4, 5, and 6. We
consider s to be the number of nodes that could potentially have been reached in this
number of hops. In actuality, the number of nodes queried is slightly lower since cycles
can result in some nodes being queried twice. Accounting for this difference however

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 105

(a) eDonkey (b) Movielens

Fig. 1. Average Hit Rates

does not change the overall performance ordering of the methods. The figure also plots
results for two clustered overlays with the maximum cluster size determining the search
neighborhood size (s). We compare clusters created at random to clusters created by an
algorithm that attempts to maximize hit rates, described in Section 4.3. For the random
clusters we plot the average result of 10 random clusterings.

Direct best-neighbors search gives the highest possible hit rate for a give search
neighborhood size, since each node is able to query the nodes which it knows will
produce the most hits. Friends-of-friends and cluster-based search should, in all but
the extreme case, produce lower hit rates since nodes do not get to directly choose
all of their search neighborhood. In the eDonkey graph we see that choosing search
neighborhoods directly gives a large advantage. Increasing the friends-of-friends query
radius improves hit rates, but by a very small amount compared to the number of addi-
tional nodes queried. Similarly, creating clusters also produces fairly poor search neigh-
borhoods. The fact that a carefully considered clustering performs much better than a
random clustering indicates that a semantic grouping of nodes does exist. However, the
mediocre performance of the friends-of-friends and cluster based searches indicates that
this grouping is not entirely clear cut. For the Movielens data set both friends-of-friends
and cluster-based search perform much better. However, random clusters also produce
good search neighborhoods, indicating that the improved performance is more due to
the fact that there is a greater amount of item replication in the Movielens data than due
to the fact that better groupings exist.

4.2 Load Balancing

From Figure 1 it would appear that direct best-neighbors search should always be used.
Hit rates are, however, only one aspect of search performance. Figure 2 plots the largest
load ratio seen by any node in the network on the y-axes, with again the maximum
search neighborhood size on the x-axes. For this measure cluster-based search should

106 E. Ogston

(a) eDonkey (b) Movielens

Fig. 2. Maximum Load Ratios

produce the best results. All the nodes a node queries in its cluster will also query it
in return, resulting in a load ratio of 1. In a best-neighbors overlay, on the other hand,
while the out-degree of a node is fixed, the in-degree is unlimited. Thus some nodes
with many or very popular items could be disproportionately popular, and receive an
inordinately large number of queries, resulting in large load ratios. The plot for best-
neighbors search in the eDonkey data set shows that this does happen for low neighbor-
cache sizes. As neighbor-cache size increases, however, nodes find more replicas in
new outgoing neighbors than they must serve to new incoming neighbors. Thus for
larger neighbor cache sizes loads appear to be reasonably well balanced. With a neigh-
bor cache size of 150 the maximum load ratio is only 2.5. Friends-of-friends search, on
the other hand, results in a larger proportion of queries being forwarded to more popu-
lar nodes as the query radius increases, while those nodes do not benefit much from a
larger search neighborhood. Thus for friends-of-friends search loads become more im-
balanced as query radius increases. The Movielens data shows more of an imbalance;
for direct best-neighbors searches at a neighbor-cache size of 150 the maximum load
ratio is 8.7. This indicates that the Movielens data set contains nodes which many other
nodes choose as neighbors. Such nodes are more likely to occur in the Movielens data
set which has more users than items than in the eDonkey data set in which there are
many more items than users.

Maximum load ratios, however, only tell part of the story; the load distribution over
all of the nodes gives a clearer picture of how balanced a system is. Figure 3 plots
load ratio distributions for direct best-neighbors search with neighbor cache-sizes that
produce good hit rates. Figure 3(a) gives the distribution for the eDonkey data set with a
neighbor cache size of 120. Figures 3(b) and 3(c) give the distribution for the Movielens
data set with a neighbor cache size of 5. Overall, the eDonkey nodes are fairly evenly
balanced, only 13.6% of nodes have a ratio over 1, and 8.8% are exactly balanced with
a load ratio of 1. The worst-off node serves 2.5 times more files than it receives, and
the majority of nodes receive a little more than the system than they give, but these

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 107

(a) eDonkey, s = 120, load ratios divided into intervals of 0.025

(b) Movielens lightly loaded nodes, s = 5, in-
tervals of 0.025

(c) Movielens heavily loaded nodes, s = 5, in-
tervals of 0.25

Fig. 3. Example Load Ratio Distributions for Best-Neighbors Overlays

imbalances would probably be considered reasonable by users. For the Movielens data
sets the distribution is much worse. Some nodes give much more to the system then
they receive, with the worst off having a load ratio of 72, and only 1.6% of nodes have a
load ratio of 1 or above. Of more concern, however, is the fact that most nodes provide
much less to the system than they receive, with 20.5% of nodes contributing nothing
at all. Thus, even though all nodes provide files in this data set, a large percentage end
up free riding due to the structure of the network. With a larger cache size of 120 this
distribution improves, the maximum load ratio is 10.4, 5.6% of nodes have a load ratio
of 1 or above, and only 3.3% of node contribute nothing. However, the distribution still
remains heavily skewed so that most nodes provide much less than they receive.

4.3 Determining Clusters

The hit ratio for cluster-based search depends heavily on the clustering of the nodes
created by the clustered-overlay. When groupings are straightforward most algorithms
will produce a reasonable clustering of a data set. We tested two basic algorithms, k-
means and a hierarchical top-down minimal-spanning-tree algorithm (MST). We found
that for our measure of distance, the number of files two nodes have in common, nei-
ther of these produced good clusters. MST produced one large cluster and many single
point clusters, due to the high dimensionality of the data and low similarity between
nodes. For k-means, which depends on finding poor initial clusterings, then gradu-
ally improving them by moving points to new clusters, points were so much more

108 E. Ogston

similar to themselves than to any other point that the initial clusterings could not be
much improved upon. The failure of these two algorithms to produce reasonable clus-
terings indicates that obvious clusters do not exist within the data sets. This is not very
surprising considering the high dimensionally of the data and the sparsity of the user-
item matrix. Given more data on user preferences, and thus a more accurate measure
of similarity between nodes we might be able to determine clusterings more easily. On
the other hand, it is also likely that such clusterings simply do not exist. While users are
similar to some other users, they do not fall into clear cut categories.

For the experiments in this paper we used a staged, size-limited, bottom-up hierar-
chical clustering algorithm, which, though trial and error, provided the best clusterings
we could find. This algorithm considers a set of clusters, which is initially the set of
individual data points. For each cluster, c1, its nearest neighbor, c2, for which the com-
bined size of c1 and c2 does not exceed some maximum value M is calculated. The
two clusters which are closest together are then combined. This operation is repeat un-
til no more combinations can be made. The distance metric used was the reciprocal of
the number of new “hits” that would result by combining the two clusters. For large
M this procedure resulted in a single cluster forming, which most other clusters con-
sidered their closest neighbor. This cluster would grow to size M , at which point it
could accept no new members, thus allowing a next favorite to grow. To force clusters
to grow in parallel we divide the process into phases in which M is slowly increased.
A series that prevented the largest existing clusters from joining together each phase
appeared to work the best. For the clustered-overlays measured above we used the se-
ries, M = 2, 3, 5, 9, 17, 33, 65, 129, 257. Cluster sizes can end up being smaller than
the largest value of M , thus actual cluster sizes varied from the maximum size plotted
in the graphs.

5 Conclusions and Discussion

We have presented a comparison study of peer-to-peer search in two fundamental forms
of semantic-overlay network. We compared search performance in terms of hit rates
and load balancing, given the best possible overlay configurations for two typical file
sharing data sets. We found that high hit rates can be achieved in a simple overlay in
which each node is directly linked to a small number of best neighbors. For the Movie-
lens data set, in which item replication was high, only 10 neighbors per node were
needed for nodes to be able to find copies of 90% of their files in neighboring nodes.
For the eDonkey data set, which contained many rare files, still only 175 neighbors
per node were required to achieve a 90% hit rate. Methods for building overlays that
reduce the number of direct neighbors per node, by assuming that nodes fall into inter-
est groups, were not as effective, indicating that though node groupings exist to some
extent they are not well enough defined to be exploited in this way. Creating groups of
nodes, however, may prove useful in situations where the fairness of resource usage is
a an issue. We observed that in the Movielens data set allowing nodes to individually
choose their best neighbors resulted in a network in which a large number of nodes
did not receive queries, and thus did not participate equally in the file sharing network.

An Analysis of Interest-Community Facilitated Peer-to-Peer Search 109

Creating clusters of nodes avoided this problem, and, because of the high item replica-
tion within the data set, still allowed for reasonably high query hit rates.

These observations have interesting implications for the application of peer-to-peer
techniques in multi-agent systems. The choice between using a best-neighbors or a clus-
tered overlay involves a trade-off between search performance and fairness. In peer-to-
peer systems, which are often concerned with data-centric applications, performance
often takes priority. In multi-agent systems, in which agents are already complex and
transactions can be expensive, the importance of fairness might justify the extra cost
of building clusters. Further, the data-set characteristics for an application, and in par-
ticular the degree of replication, can play a large role in this choice. Peer-to-peer ap-
plications, which are often quite open about the peers they accept, are likely to have
less item replication than multi-agent applications in which a smaller variety of agents
usually exist.

In this study we only considered abstract overlay structures, not the performance
of actual peer-to-peer systems. In a real best-neighbors network it is possible to make
load distributions in the network more fair by capping the contribution of popular nodes
[5]. This, and other incentive mechanisms, can prevent popular nodes from becoming
overloaded. Incentive mechanisms, however, do not necessarily solve the problem that
unpopular nodes simply never get a chance to contribute. In an actual peer-to-peer sys-
tem we would also face the problem that methods for determining the best possible se-
mantic overlay do not usually exist. This will lower hit rates in both best-neighbors and
clustered overlays. However, the fact that an overlay containing random clusters also
performed reasonably for the Movielens data set indicates that in some applications
finding the exact best structure for the network might not be particularly important.

References

1. Fessant, F.L., Handurukande, S., Kermerrec, A.M., Massoulie, L.: Clustering in peer-to-peer
file sharing workloads. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279,
pp. 217–226. Springer, Heidelberg (2005)

2. Miller, B., Konstan, J., Riedl, J.: Pocketlens: Toward a personal recommender system. ACM
Transactions on Information Systems 22, 437–476 (2004)

3. Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer networks. SIG-
COMM Computer Communication Review 32, 177–190 (2002)

4. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like p2p
systems scalable. In: Proc. 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pp. 407–418 (2003)

5. Cholvi, V., Felber, P., Biersack, E.: Efficient search in unstructured peer-to-peer networks. In:
Proc. 16th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 271–272
(2004)

6. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-based
locality in peer-to-peer systems. In: Proc. of the 22nd INFOCOM Conference (2003)

7. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-
based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 1143–1152. Springer, Heidelberg (2005)

8. Yang, B., Vinograd, P., Garcia-Molina, H.: Evaluating guess and non-forwarding peer-to-
peer search. In: Proc. 24th Int’l Conference on Distributed Computing Systems, pp. 209–218
(2004)

110 E. Ogston

9. Cohen, E., Fiat, A., Kaplan, H.: Associative search in peer-to-peer networks: Harnessing
latent semantics. In: Proc. of the 22nd INFOCOM Conference (2003)

10. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. Technical report,
Computer Science Department, Stanford University (2002)

11. Garbacki, P., Epema, D., van Steen, M.: A Two-Level Semantic Caching Scheme for Super-
Peer Networks. In: Proc. IEEE 10th Int’l Workshop on Web Content Caching and Distribu-
tion (2005)

12. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Löser, A.:
Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In:
Proc. 12th Int’l World Wide Web Conference, pp. 536–543 (2003)

13. Ogston, E., van Steen, M., Brazier, F.: Group formation among decentralized autonomous
agents. Applied Artificial Intelligence 18, 953–970 (2004)

Mitigating the Impact of Liars by Reflecting Peer’s
Credibility on P2P File Reputation Systems

So Young Lee, O-Hoon Kwon, Jong Kim, and Sung Je Hong

Dept. of Computer Science and Engineering,
Pohang University of Science and Technology

{soyoung,dolphin,jkim,sjhong}@postech.ac.kr

Abstract. Liars that submit wrong feedbacks can subvert the reputation systems
by inducing false detection of untrustworthy downloads. In this paper, we propose
a reputation management scheme which mitigates the impact of liars and reduces
the untrustworthy downloads on the P2P file reputation system. Our scheme uses
global file reputations and local peer credibilities to build the trust of downloaded
files. Simulation results show that the proposed scheme effectively reduces the
untrustworthy downloads with low false detection rate even when the high rate of
untrustworthy files and liars exist.

1 Introduction

Since all peers have equal capabilities in a fully decentralized P2P system, no peer has
the special power or responsibility to monitor and restrain the others’ behaviors. This
nature of P2P frees the malicious peers to behave badly and spread untrustworthy files
such as fake files that cheat their contents and corrupted files that harm the others’
systems. To protect the systems and innocent users from these malicious behaviors
without the help of any central authorities, several reputation based P2P systems have
been proposed [1,2,3,4,5].

There are some notions related to the P2P reputation systems. Since our focus is on
the P2P file sharing systems, terminologies are based on the file sharing applications.
Trust of a file represents whether the file is trustworthy or not. The trust value of a file
is weighted on the aggregation of feedbacks from the past users. The positive feedbacks
increase the trust value of the file and negative feedbacks decrease it. A file with high
trust value is regraded as trustworthy. However, since all users do not always leave
correct feedbacks, the feedbacks are weighted by the feedback senders’ Credibility.
A peer’s credibility is built based on its past feedback. If a peer’s past opinions are
credible, the peer has high credibility value. Trust of a peer is determined by the trust
of the files provided. If a peer provides many trustworthy files, it has a high trust value.

There are two different approaches in P2P reputation system such as using Peer Rep-
utation and using File Reputation. The difference of two systems is the target of the
evaluation. Assume that peer i downloads the file f from peer j and peer i leaves its
feedback. In the peer reputation system, the target of the feedback is peer j. On the
other hand, in the file reputation system, the target of the feedback is file f . The use of
file reputation gives some benefits such as preventing malicious peers who change their

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 111–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 S.Y. Lee et al.

identities and reducing the message overhead for managing reputation data. Most of the
previous works use peer reputation [2,3,4,5] and [1] uses the combined reputation of
resources and peers based on Gnutella. In [6], we have proposed a reputation manage-
ment scheme using file reputation and peer reputation together based on the structured
P2P system.

Since the reputation system highly depends on the feedbacks left by the past users,
the credibility of the feedback sender is very important. But, the previous studies for the
P2P reputation system have emphasized on detecting and punishing peers who provide
untrustworthy files and are negligent to the Liars who send incorrect feedbacks. Such
liars can subvert the reputation system by polluting the feedbacks. Therefore, the reputa-
tion system should take the liars into considerations and diminish their negative impact.
To confirm the correctness of a feedback, some studies [2,5] use the trust value of the
feedback sender or feedback receiver, by making assumptions that the peers with high
trust value always give the correct feedback or decent file. However, these assumptions
are not always true. Sometimes, good peers who provide trustworthy files can submit
wrong feedbacks in order to upgrade their reputation by degrading other peer’s reputa-
tion. And malicious peers can build a good reputation and later send untrustworthy files
to maximize their influence. Therefore, the correctness of feedback itself should be con-
sidered as a criterion for the peers’ credibility [4,3]. That is, peers can judge the other’s
credibility by comparing the feedbacks of themselves with those of others for the same
target. All of the proposed methods to reflect peer’s credibility have been proposed on
peer reputation systems while none of them is based on file reputation systems.

In this paper, we propose a method to mitigate the impact of liars by reflecting peer’s
credibility on the file reputation system. The proposed scheme has two characteristics.
Firstly, the scheme is based on the file reputation system and secondly, we take an ap-
proach to compare the feedbacks of the peers for the same file and use the similarity of
the feedbacks as credibility metric. This paper is organized as follows. In Section 2, we
briefly overview the previous works. In Section 3, we describe the file reputation system
without considering the credibility of the feedbacks. In Section 4, we explain consid-
erations for supporting the credibility of the feedbacks in the file reputation system. In
Section 5, we describe the reputation management protocol. Then, we show the sim-
ulation results in Section 6. Finally, we summarize this paper and discuss concluding
remarks and future works in Section 7.

2 Related Works

In EigenTrust [2], after a transaction is performed, a peer evaluates whether the trans-
action is positive or negative and stores the rating in its local storage. A local trust value
sij is defined as the sum of the ratings of all transactions that peer i has downloaded
from peer j. Multiple score managers of peer i aggregate the local trust values and build
the global trust value of peer i when other peers request the trust value of peer i. In the
aggregation process, score managers ask their neighbors on their opinions about peer i
and the opinions are weighted by the trust value of the opinion senders. Since they use
the trust value of the opinion sender as the credibility, they cannot prevent liars with
high trust value.

Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P 113

In [5], they define a suspicious transaction to detect the peers who provide false
feedbacks. A suspicious transaction is one in which the feedback is different from the
one expected for the file provider whose trust value is known. That is, when the trust
value of the file provider is positive but the feedback for the provider is negative, the
transaction is regarded as suspicious. If αi is the ratio of the number of suspicious
feedbacks sent by peer i over the total number of feedbacks sent by peer i, the credibility
of peer i is represented (1-αi). They implicitly assume that a highly reputable peer
always provides decent files and judges the correctness of the feedback by the provider’s
trust value. If malicious peers once build a good reputation and later send untrustworthy
files, this method will cause false detection.

In [3], peers store their evaluations to its local storage and build local trust values.
A peer selects a file by the provider’s trust value. If it doesn’t have enough information
about file providers, it queries others about the unknown providers. After downloading
a file, if its evaluation is positive, the trust rating of the file provider is upgraded. Oth-
erwise, the trust rating of the provider and the rating of those who contributed to its
selection are downgraded. And the credibility of a peer who has expressed an opinion
on other peer is updated when the peer’s trust rating is updated. If the peer’s trust rating
is upgraded and the opinion is positive or the peer’s trust rating is downgraded and the
opinion is negative, the peer’s credibility rating is upgraded. Otherwise, the value is
downgraded. In PeerTrust [4], peer i uses a personalized similarity measure to rate the
credibility of another peer j through peer i’s personalized experience. If peer i wants to
compute peer j ’s credibility, peer i retrieves the common set of peers that have inter-
acted with both peer i and j. The feedback by peer i and the feedback by peer j over
common set of peers are represented as two vectors and the similarity between the two
feedback vectors is defined as the credibility. In [3,4], peers build the credibilities of
other peers by comparing their own judgements and the others’ feedbacks for the same
peer. Their approaches are similar to ours in comparing the feedbacks for the same tar-
get. However, they compare the feedbacks for the same peer, whereas we comapre the
feedbacks for the same file.

3 Feedback Only Reputation Scheme

In [6], we have proposed a reputation management scheme using file reputation on
structured P2P system, and explain our scheme based on Chord [7]. Every peer that
takes part in the system has a unique identifier IDpeer which is the hash value of the
peer’s IP address. And each file has two identifiers; IDkey which is generated by hashing
the file name and IDcontent which is generated by its contents. Every peer is responsible
for some part of the file index information and manages the reputation data of the files
using File Reputation Repository. The file reputation repository is organized as a table
with attributes (IDkey , IDcontent, Recommenders, Non-Recommenders, File Owners,
and Description). The repository stores the information about the file including who
left a positive evaluation and a negative evaluation and who has the file using two keys,
IDkey and IDcontent. The value of Recommenders column is the list of the peers that

114 S.Y. Lee et al.

left positive evaluations and Non-Recommenders is the list of the peers that left negative
evaluations for the file. After using a file, the consumer sends its evaluation as positive
or negative to the file reputation manager. If the peer sends a positive evaluation, the
IDpeer of the peer is added to the list of Recommenders. Otherwise, it is added to the
list of Non-Recommenders. When a peer sends a search query and receives the list of
files, the files are classified into 3 levels by their file reputation: Trustworthy, Unknown,
and Untrustworthy. The reputation level of each file is decided by the following two
conditions.

|Positive| + |Negative| >= T (1)

|Positive|
|Positive| + |Negative| >= P (2)

The two parameters, T and P, are system-wide parameters. The parameter T is a data
confidence threshold, which represents the minimum number of evaluations required
and P is a trust threshold, which represents the ratio of positive evaluations. The files
that do not satisfy Condition (1) are classified as Unknown. Namely, the number of
evaluations are not enough to decide whether the file is trustworthy or not. The files
which satisfy Conditions (1) and (2) are classified as Trustworthy. These files have
been evaluated enough times and are perceived as trustworthy, whereas, the files which
satisfy Condition (1) but do not satisfy Condition (2) are classified as Untrustworthy. A
peer selects one among the files classified as Trustworthy or Unknown. In this scheme,
we do not consider the credibility of the feedback sender. In the following, we refer to
this scheme [6] as the Feedback Only Reputation Scheme (FORS).

4 Considerations for Credibility

To detect liars, peers build the other’s credibility based on feedback comparison for the
same file and store the credibility value in their local repository. And these credibility
values are used for computing trust value of files.

4.1 Credibility Repository

The credibility repository is organized as a table with attributes (IDkey , Credibility Vec-
tor). We reference the scheme which is proposed by Selcuk et al. [3] to store and com-
pute the credibility value. Each peer stores the similarity of its opinion and others’
opinion in the credibility repository. To compute the similarity, a peer compares its
feedback and other’s feedback for the same file. The result of feedback comparison is

Table 1. Credibility Repository

IDkey Credibility Vector
N5 00101
N8 000111
N26 1110

Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P 115

stored in the credibility vector, which is a binary vector with maximum l bits. The bit
value 1 represents that the peer’s feedback accords with its own. The bit value 0 rep-
resents that the feedback discords with its own. If a peer sends a search query, it can
obtain the list of Recommenders and Non-Recommenders. By referencing their recom-
mendation (or non-recommendation), the peer decides to download the file. If the peer
downloads and uses the file, it evaluates the file. If its evaluation turns out positive, it
gives Recommenders the bit value 1 and Non-Recommenders the bit value 0. If neg-
ative, it gives Non-Recommenders the bit value 1 and Recommenders the bit value 0.
The result of the most recent comparison is written at the most significant bit, shifting
the present bits to the right. Table 1 shows the Credibility Repository of peer N3. The
credibility vector of peer N5 in that repository is 00101. It means that the opinion of
peer N5 accords with that of N3 twice and discords three times. If N5’s opinion agrees
with N3 again, its credibility vector changes from 00101 to 100101. To prevent the
credibility vector from being large, the vector size is limited by l.

4.2 Credibility Computation

Peer v’s credibility computed at peer u is expressed by two values, credit rating
Cr(u, v) and discredit rating Cr(u, v). We define the credit rating Cr(u, v) as the sim-
ilarity between peer u’s and peer v’s feedback for the same file and the discredit rating
Cr(u, v) as the dissimilarity. These two values are computed by using the credibility
vector. A credibility vector with length l is read as an l-bit integer and divided by 2l for
conversion into a scalar credit rating in the [0,1) interval. And discredit rating is com-
puted from the complement of the credibility vector. An example of computing credit
rating and discredit rating is shown in Fig. 1.

Credibility Vector : 10111 −→
credit rating : (10111)2

25 = 0.72

discredit rating : (01000)2
25 = 0.25

Fig. 1. Computing credit rating and discredit rating

4.3 Trust Computation of File

Trust of file i computed at peer u is expressed by its two values; trust rating Tri(u)
and distrust rating Tri(u). We compute the trust and distrust ratings of file i using its
recommender’s and non-recommender’s credit rating and discredit rating. Trust rating
of file i, Tri(u), is expressed as the average of recommender’s credit rating and non-
recommender’s discredit rating:

Tri(u) =
1

α + β
{

α∑
k=1

rk +
β∑

k=1

nk} (3)

116 S.Y. Lee et al.

where the recommender’s credit rating R = {r1, r2, ...rα} and the non-recommender’s
credit rating N = {n1, n2, ...nβ}. The distrust rating of file i, Tri(u), is defined as the
average of non-recommender’s credit rating and recommender’s discredit rating:

Tri(u) =
1

α + β
{

α∑
k=1

rk +
β∑

k=1

nk} (4)

The file i’s trust value which is computed at peer u and denoted by Tfi(u) is defined
as Eq. (5) and the file is regraded as Trustworthy when the value of Tfi(u) > 0 ,
Untrustworthy when the value of Tfi(u) < 0 , and Undetermined when the value of
Tfi(u) = 0.

Tfi(u) = Tri(u) − Tri(u)

⎧⎨
⎩

> 0 Trustworthy
< 0 Untrustworthy
= 0 Undetermined

(5)

If the file is regarded as Untrustworthy, peer u does not download the file and chooses
one of the file among Trustworthy or Undetermined.

5 The Reputation Management Protocol

We explain how the proposed scheme works based on the steps of file sharing system.
These steps consist of the following phases: Join and Publish, Query and Response,
Select File, Update Credibility, and Submit Feedback.

5.1 Join and Publish

In this phase, a peer joins the system and publishes its files to the system. When a peer
joins the system, a peer identifier IDpeer is assigned and each shared file receives two
identifiers such as IDkey and IDcontent. A peer publishes its file by sending publish mes-
sages to the file reputation manager: Publish (IDkey , IDcontent, IDpeer , Description).
The file reputation manager that received the publish message updates its file reputa-
tion repository. If the repository does not contain the information of published file, the
manager adds a new row to its repository and adds the IDpeer value to the list of owner
column in that row. If the information already exists in the repository, the manager just
adds the IDpeer value to the owner’s list.

As shown in Fig. 2, peers N10 and N20 both publish a file whose name is the same as
”Music1” but whose contents are different. Since the two files have the same name, they
are assigned with the same IDkey and published to the same file reputation manager N3.
The manager N3 updates its repository using the received message. The file of N10 is a
newly appeared one because no entry matches its two identifiers, K3 and F7. Thus, N3

adds a new row with file owner N10, whereas the file of N20 with K3 and F6 already
exists in the repository and the other peer N4 also has the same file. In this case, N3 just
adds N20 to the owner’s list.

Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P 117

001

0105N

N8

N13

N26

11101

IDpeer

F7 N 7

N
0

N7N23

N
26

N
10

6F

N1026N

N8N5 N28N13

11110

N
12

N
15

N
20

N17

K3
N20

K3 6F N20, , ,"Music1")Publish(

K3
N20F7, , ,"Music1")Publish(

N3
N

12Credibility Repository of

N3File Reputation Repository of

Discredit Rating

0.25

0.13

0.63

0.75

0.06

0.03

0.91

0.94

Credibility Vector Credit Rating

contentIDkey ID Non−Recommenders

"Music1"

"Music1"

Recommenders Owners Description

N4

Fig. 2. Join and Publish

5.2 Query and Response

In this phase, a peer sends a search query to find a desired file and receives a response
which contains the information of files from the manager. The peer sends a query mes-
sage to the proper file reputation manager; Query (IDkey). The file reputation manager
retrieves the list of owner, the list of recommenders and the list of non-recommenders
of the file which has the same IDkey as sent on the query from its repository. If several
versions of files which have a same IDkey but different IDcontent exist, the result can
be several sets. The manager sends the response message to the requester: Response(set
of {IDkey , IDcontent, list of owners, list of recommender’s, list of non-recommenders,
description}).

In Fig. 2, if N3 has received a query to search K3 from N12, it can find that there
are two different versions of files whose IDcontent are F6 and F7 with the same key
identifier K3. From this result, manager N3 sends the following Response to the querier
N12: Response ({K3,F6,N13,{N5,N8,N28},{N4,N20},”Music1”}, {K3,F7,N7,N26,N10,
”Music1”})

5.3 Select a File

In this phase, a peer computes each file’s trust value and select a file. A peer which
has received the Response computes each file’s trust value referring to its local cred-
ibility repository. The peer obtains the list of recommenders and non-recommenders
from Response, and finds the credibilities of recommenders and non-recommenders
from its Credibility Repository. Only the opinions of the peers whose credibility exist
in Credibility Repository are used to compute the trust value of each file and the others
are ignored. Using the credibility vector, the peer can compute the recommenders’ and
non-recommenders’ credit rating and discredit rating. And using this credibility value, it
can compute each file’s trust value. The peer selects one of the files which are classified

118 S.Y. Lee et al.

as Trustworthy and Undetermined. The files classified as Untrustworthy are excluded
from its choice.

Fig. 2 shows the Credibility Repository of file requester N12 and computed credit rat-
ing and discredit rating of other peers. Among recommenders and non-recommenders,
the opinions of peer N13, N5, N8, and N26 are used to compute the trust of a file. Let
the file whose IDcontent is F6 be f1 and the file whose IDcontent is F7 be f2. The file
f1’s trust value is computed as follows;

Tf1(N12) = Tr1(N12) − Tr1(N12)

=
0.91 + 0.63 + 0.75

3
− 0.06 + 0.25 + 0.13

3
= 0.61 (6)

Tf2(N12) = Tr2(N12) − Tr2(N12)
= 0.03 − 0.94
= −0.91 (7)

By Eqs (6) and (7), the file f1 is regarded as trustworthy and f2 is regarded as un-
trustworthy. Therefore, peer N12 will decide to download the file f1.

5.4 Update Credibility and Submit Evaluation

In this phase, the peer evaluates the file and applies the evaluation to the credibility
repository and file reputation repository. After using the file, the peer evaluates its
trustworthiness as positive or negative. If the file turns out trustworthy, it increases the
recommender’s credibility and decreases the non-recommender’s credibility. If not, it
decreases the recommender’s credibility and increases the non-recommender’s credibil-
ity. And it sends the evaluation to the file reputation manager. If the peer sends positive
evaluation, the file reputation manager adds IDpeer of it to the list of recommenders.
And if it sends a negative one, the manager adds it to the list of non-recommenders.

6 Performance Evaluation

We have performed six experiments to show the effect of the proposed scheme on reduc-
ing untrustworthy downloads with low false detection rate. In the first four experiments,
we have compared the proposed scheme which is referred to as the Feedback Credibil-
ity Reputation Scheme (FCRS) with the Feedback Only Reputation Scheme(FORS) [6].
These experiments show the effect of using the concept of credibility on the file rep-
utation systems. In the fifth and sixth experiments, we have compared FCRS with the
Loubna’s scheme [5] which defines suspicious transaction for detecting liars. These
experiments compare the file reputation systems and the peer reputation systems with
the concept of credibility.

As performance metrics, we use the Untrustworthy Downloads Rate (UDR) and
False Detection Rate(FDR). UDR and FDR are defined as follows:

UDR =
N(ud)
N(t)

, FDR =
N(fp) + N(fn)

N(t)
, (8)

Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P 119

where N(t) denotes the total number of requests and N(ud) denotes the number of
untrustworthy downloads. And N(fp) denotes the number of blocked trustworthy files
(false positive) and N(fn) denotes the number of allowed untrustworthy files (false
negative) by a wrong trust computation. Therefore, UDR represents the effect of the
scheme for reducing untrustworthy downloads and FDR represents the accuracy of the
scheme for distinguishing untrustworthy files from trustworthy files.

The experiments are performed under a static P2P network with 1,000 peers and the
identifiers of peers and files are 32-bit random number. Every peer has 20 different kinds
of files, thus the total number of files is 20,000 and the number of distinct files are 4,000.
Also, the system-wide parameters T, P, l are fixed as 5, 0.7 and 10. In experiments, we
vary the percentile of untrustworthy files from 10% to 80% and that of liars also from
10% to 80%.

6.1 Simulation Results

In the first experiment, we measured the UDR of two schemes by fixing the rate of
untrustworthy file with 10% and varying the rate of liars from 10% to 80%. Fig. 3.(a)
shows the result of FCRS and Fig. 3.(b) shows the result of FORS. The results show that
the UDR decreases as the total number of requests increases in both schemes. However,
as the rate of liars increases, FORS does not effectively decrease the UDR, whereas,
FORS is not affected by the rate of liars.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

U
nt

ru
st

w
or

th
y

D
ow

nl
oa

ds
 R

at
e

(%
)

Number of requests (*1,000)

10% Liar
30% Liar
50% Liar
70% Liar
80% Liar

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

U
nt

ru
st

w
or

th
y

D
ow

nl
oa

ds
 R

at
e(

%
)

Number of requests (*1,000)

10% Liar
30% Liar
50% Liar
70% Liar
80% Liar

(a) FCRS (b) FORS

Fig. 3. UDR under various rate of liars

In the second experiment, we have changed the rate of untrustworthy files from 10%
to 80%. In this experiment, the rate of liars are the same as the rate of untrustworthy
files. Fig. 4 shows the result of the second experiment. In case of FCRS, as shown in
Fig. 4.(a), UDR decreases rapidly under the high rate of untrustworthy files. But, as
shown in Fig. 4.(b), FORS does not work well under the high rate of untrustworthy
files.

In the third experiment, we have compared FDR of two schemes when the rate of
liars is 10% and 50%. Fig. 5 shows that FCRS distinguishes trustworthy files and

120 S.Y. Lee et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

R
at

e
of

 u
nt

ru
st

w
or

th
y

do
w

nl
oa

ds
(%

)

Number of requests (*1,000)

10% untrustworthy file and liars
30% untrustworthy file and liars
50% untrustworthy file and liars
70% untrustworthy file and liars
80% untrustworthy file and liars

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

R
at

e
of

 u
nt

ru
st

w
or

th
y

do
w

nl
oa

ds
(%

)

Number of requests (*1,000)

10% untrustworthy file and liars
30% untrustworthy file and liars
50% untrustworthy file and liars
70% untrustworthy file and liars
80% untrustworthy file and liars

(a) FCRS (b) FORS

Fig. 4. UDR under various rate of untrustworthy files

untrustworthy files accurately with both low rate (10%) and high rate (50%) of liars.
However, FORS regards many trustworthy files as untrustworthy by wrong feedbacks
from the liars.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

F
al

se
 D

et
ec

tio
n

R
at

e(
%

)

Number of request(*1,000)

FCRS with 10% liars
FORS with 10% liars
FCRS with 50% liars
FORS with 50% liars

Fig. 5. FDR of the two schemes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

F
al

se
 D

et
ec

tio
n

R
at

e
(%

)

Number of requests(*1,000)

always
1/10
1/5
1/3
1/2

Fig. 6. FDR of FCRS when the liars change
their feedback occasionally

In the fourth experiment, we consider the liars’ dynamic behavior. That is, liars
change their feedbacks occasionally to hide their misbehaviors. We have performed
an experiment under 30% of untrustworthy files and 30% of liars. The liars send wrong
feedback with some probability such as 10%, 20%, 33%, 50%, once every 10 times
when the probability is 10%. Fig. 6 shows that the liars’ dynamic behavior has little
influence on FDR of the proposed scheme.

In the fifth and sixth experiments, we have compared the UDR of FCRS to the UDR
of the Loubna’s scheme [5]. Since FCRS is based on the file reputation system and
Loubna’s scheme [5] is based on the peer reputation system, we set the simulation
parameters more variously than the previous experiments. Table 2 shows the distribution
of the peers and their behavior patterns of the fifth experiment. We can expect 45%
(50% × 10% + 10% × 20% + 10% × 80% + 30% × 100%) of untrustworthy files in

Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P 121

Table 2. Distribution of peers and Behavior type

Type Rate of Peers Pro. of sending Pro. of submit
untrustworthy files wrong feedback

Good Peer 50% 10% 0%
Malicious 1 10% 20% 80%
Malicious 2 10% 80% 80%
Malicious 3 30% 100% 100%

Table 3. Distribution of peers and Behavior Type

Type Rate of Peers Pro. of sending Pro. of submit
untrustworthy files wrong feedback

Good Peer 30% 10% 0%
Malicious 1 20% 20% 80%
Malicious 2 20% 80% 80%
Malicious 3 30% 100% 100%

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

R
at

e
of

 u
nt

ru
st

w
or

th
y

do
w

nl
oa

ds
(%

)

Number of requests (*1,000)

FCRS
Loubna et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

R
at

e
of

 u
nt

ru
st

w
or

th
y

do
w

nl
oa

ds
(%

)

Number of requests (*1,000)

FCRS
Loubna et al.

(a) (45%, 46%) (b) (52%, 62%)

Fig. 7. UDR of FCRS and Loubna’s scheme [5] (Rate of untrustworthy files, Rate of liars)

average and 46% (10% × 80% + 10% × 80% + 30% × 100%) of wrong feedbacks
in average from the parameters of Table 2. Table 3 shows the distribution of peers and
their behavior patterns of the sixth experiment. We can expect 52% (30% × 10% +
20% × 20% + 20% × 80% + 30% × 100%) of untrustworthy files in average and
62% (20% × 80% + 20% × 80% + 30% × 100%) of wrong feedbacks in average
from the parameters of Table 3. Fig. 7(a) shows the result of the fifth experiment and
Fig. 7(b) shows the result of the sixth experiment. Since Loubna et al.’s scheme stores
the reputation and credibility data in supernodes, the credibility of a peer is built more
rapidly than FCRS. In comparison, since FCRS uses the local credibility repository, it
needs some time to build the other’s credibility. Nevertheless, FCRS steadily reduces
the rate of the untrustworthy downloads even though the rate of liars is high.

122 S.Y. Lee et al.

7 Conclusion and Future Works

We have presented a reputation management scheme which mitigates the impact of
liars and reduces the untrustworthy downloads on file reputation system. The proposed
scheme can reduce the untrustworthy downloads even in case of existing high rate of
liars and high rate of untrustworthy files. Also the simulation results show that the false
detection rate is reduced gradually as the number of file requests increases. It means
that the proposed scheme can accurately detect the untrustworthy files and trustworthy
files. And finally, we show that the proposed scheme still works well when the liars’
opinions are occasionally changed. However, to encourage peers to leave feedbacks,
some incentive mechanisms are needed and a method to share the local credibility data
will be helpful to rapidly build credibility.

Acknowledgments

This research was supported by the MIC(Ministry of Information and Communication),
Korea, under the ITRC(Information Technology Research Center) support program su-
pervised by the IITA(Institute of Information Technology Assessment). (IITA-2005-
(C1090-0501-0018))

References

1. Damiani, E., di Vimercati, D.C., Paraboschi, S., Samarati, P., Violante, F.: Reputation-based
approach for choosing reliable resources in peer-to-peer networks. In: Proceedings of the 9th
ACM Conference on Computer and Communications Security (2002)

2. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation
management in p2p networks. In: Proceedings of the 12th International World Wide Web
Conference (2003)

3. Selcuk, A.A., Uzun, E., Pariente, M.R.: A reputation-based trust management system for p2p
networks. In: Proceedings of the International Workshop on Global and Peer-to-Peer Comput-
ing, IEEE/ACM CCGRID (2004)

4. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge and Data Engineering 16, 843–857 (2004)

5. Mekouar, L., Iraqi, Y., Boutaba, R.: Detecting malicious peers in a reputation-based peer-to-
peer system. In: The IEEE Consumer Communications and Networking Conference (CCNC)
(2005)

6. Lee, S.Y., Kown, O.H., Kim, J., Hong, S.J.: A trust management scheme in structured p2p sys-
tem. In: Despotovic, Z., Joseph, S., Sartori, C. (eds.) AP2PC 2005. LNCS (LNAI), vol. 4118,
Springer, Heidelberg (2006)

7. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-
Peer lookup service for internet applications. In: Proceedings of the 2001 ACM SIGCOMM
Conference (2001)

A Comparative Study of Reasoning Techniques for
Service Selection�

Murat Şensoy and Pınar Yolum

Department of Computer Engineering, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
{murat.sensoy,pinar.yolum}@boun.edu.tr

Abstract. Open multiagent systems do not provide guarantees about the quality
of the service of its providers. This makes it difficult for service consumers to find
correct service providers. Many existing approaches share the intuition that ser-
vice consumers can share their knowledge about service providers to help locate
useful service providers. However, representing existing past knowledge and rea-
soning about this knowledge are two important challenges. A traditional approach
for dealing with these challenges is to represent past dealings with ratings and to
aggregate the ratings. However, rating-based approaches lack the expressiveness
to articulate objective information about service dealings. To enable richer rep-
resentations, we have developed an objective experience-based approach for ser-
vice provider selection, in which consumers record their experiences with service
providers rather than the overall, subjective ratings for a provider. A consumer’s
experience with a service provider is represented using an ontology that can cap-
ture subtle details including the context in which the service was requested. When
a service consumer decides to share her experiences with a second service con-
sumer, the receiving consumer evaluates the experience using its own context and
evaluation criteria. In this work, we tackle the problem of reasoning about the col-
lected experiences. We study different reasoning techniques for consumer agents
to use in selecting service providers. We formulate these techniques into agent
strategies and examine their strengths and weaknesses through simulations.

1 Introduction

Finding service providers for specific needs is difficult when service providers offer ser-
vices at varying levels. A consumer agent can try various service providers on its own
and choose a provider solely based on its previous experiences. But, that means many
trial-and-errors on the consumer side. A more acceptable solution is to enable con-
sumers to exchange knowledge about service providers, so that each agent can reason
about the knowledge it gathers from other agents.

The simplest form of such exchange is that of ratings, commonly employed in to-
day’s e-commerce sites. The basic idea is that the consumers rate the providers that
they interact with and reveal their ratings publicly [1] or privately to certain agents. The

� This research has been supported by Boğaziçi University Research Fund under grant
BAP06A103 and The Scientific and Technological Research Council of Turkey by a CAREER
Award under grant 105E073. We also thank the anonymous referees for helpful comments.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 123–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

124 M. Şensoy and P. Yolum

agents then examine these ratings and decide if any of the service providers are satisfac-
tory for their own purposes [2]. Rating-based approaches reflect the subjective opinion
of the raters. Most of the time, the context of the ratings are not made explicit. Hence, it
is hard to judge what the rating would correspond to in a different setting. Furthermore,
even if the context of the ratings is made explicit, these ratings may still mislead the
consumers, because the satisfaction criteria of the consumer using these ratings may be
different from the satisfaction criteria of those who give the ratings in the first place.

The reasoning process is inherently dependent on how the knowledge is represented.
For example, since the ratings represent previous knowledge compactly, it is difficult
to interpret what the numbers mean in different settings and to reason on these ratings.
Thus, reasoning elaborately on others’ knowledge will require the knowledge to be
expressed in greater detail.

We have recently proposed an approach for distributed service selection that allows
consumers to capture their experiences with the service providers using ontologies [3].
The ontology represents the details of the requested service description and the re-
ceived service. The consumers can then exchange their detailed experiences of service
providers rather than plain ratings. A consumer that receives another agent’s particular
experience evaluates the received experiences individually considering her own context
to decide on which service provider to select. Whereas rating-based approaches reflect
the subjective opinion of the raters, the experience-based approach allows the objective
facts of the experience to be communicated to the other party.

The proposed approach enables experiences to be expressed in detail. The immediate
question is how the agents will use these experiences to select a service provider. We had
previously employed a parametric classification technique using Gaussian model. Here,
we also develop a strategy in which agents use case-based reasoning to select a service
provider. Our results show that when service providers do not change the quality of their
service, both reasoning techniques perform equally well in finding service providers.
However, case-based reasoning finds the service providers in a shorter time than the
parametric classification. On the other hand, if the service providers vary their service
offering even a small percentage, then case-based reasoning performs worse than the
parametric model.

The rest of this paper is organized as follows: Section 2 gives a brief overview of
our representation of experiences and Section 3 explains how agents interact to ex-
change their experiences. Section 4 and Section 5 explain parametric classification us-
ing Gaussian model and case-based reasoning respectively and how they can be used
for selecting providers using a set of experiences. Section 6 explains our experimental
setup, simulations, and results of comparisons. Section 7 summarizes our contribution
and compares it to relevant literature.

2 Representation of Experiences

Rating-based approaches reflect the subjective opinion of the raters. Even though the
context of the ratings is explicitly expressed, these ratings may still mislead the con-
sumers, because the satisfaction criteria of the consumer using these ratings may be dif-
ferent from the satisfaction criteria of those who give the ratings. Even if their service

A Comparative Study of Reasoning Techniques for Service Selection 125

interests are the same, consumers rate the same service differently depending on their
satisfaction criteria. The main question at this point is how to get rid of subjectiveness
of ratings in the service selection.

Instead of ratings, consumers can record their interactions with service providers in
a great detail within an experience structure [3]. An experience contains the consumer’s
service demand and the provided service in response to the service demand. Actually,
an experience expresses the story between the consumer and the provider regarding a
specific service demand. So, any consumer receiving an experience can evaluate the
service provider according to its own criteria using the objective data in the experience.
This approach removes the subjectiveness of the rating-based approaches.

Experiences require representational power of ontologies. For each domain, a dif-
ferent ontology for the representation of experiences is necessary. We represent a base
level ontology for domain independent concepts and a domain ontology for domain
dependent ones. The base level ontology covers domain-independent infrastructure of
the experience ontology. It is centered around the Experience class, whose instances
represent experiences of service consumers. This is motivated by the concept of expe-
riences in real life. An experience is a combination of what we have requested from
a service provider and what we have received at the end. So, in the ontology, an ex-
perience consists of a service demand and supplied service for the demand. For this
purpose, Demand and Service classes are included in the base ontology. Both demand
and supplied service concepts are descriptions of a service for a specific domain and
hence share a number of properties. Domain level ontology captures domain specific
properties and concepts. For example, a domain level ontology for online shopping may
include concepts such as hasShoppingItem, toLocation, hasDeliveryType, hasDelivery-
Duration, hasShipmentCost, and hasPrice. Since our focus in this paper is on reasoning,
we do not give the details of our representation. Details of base level and domain level
ontologies used for simulations can be found elsewhere [3].

Service consumer will need to interact with other service consumers with similar
demands. Since the definition of a similar demand varies from one agent to another, we
allow each consumer to define its understanding of a similar demand using the ontology
and the Semantic Web Rule Language (SWRL) [4].

When a consumer agent has a particular service demand and a list of others’ ex-
periences, then it can apply the SWRL rule to select those experiences in which the
service demands were similar to that of her own. If the consumer makes its SWRL rule
for similar demands public, other consumers can also use this expression of similarity
to reason about whether their past service demands were similar to the demand of the
consumer or not.

3 Retrieving Experiences

The service consumers are organized in a peer-to-peer multiagent system. Each service
consumer knows only a subset of all consumers in the society and lists these consumers
in its acquaintance list. An acquaintance list is a dynamic list of service consumers
having service demands classified as similar demand by the owner of the list. When a
new service consumer joins the society, its acquaintance list is populated with a small

126 M. Şensoy and P. Yolum

number of randomly chosen service consumers. Each consumer collects others’ ex-
periences in an experience repository. Each time a service consumer makes a service
selection, it uses the experiences in this repository for decision making. Service con-
sumers refresh and update their repositories periodically by removing old experiences
and adding newly found ones. Initially, service consumers do not have any experiences.

When a service consumer decides to receive a service, it checks its experience repos-
itory. If number of experiences in the repository is small, the service consumer collects
new experiences. However, in order to collect new experiences, the consumer should
have sufficient number of acquaintances. If it does not have enough acquaintances, then
it increases the number of its acquaintances by first discovering other service consumers
having similar demands and by populating its acquaintance list with those service con-
sumers. This procedure is summarized in Algorithm 1.

In order to discover new acquaintances, a service consumer X uses two messages:
Peer Discovery Message (PDM) and Request for Acquaintances Message (RAM). Both
PDM and RAM messages contain a SWRL rule that expresses the similar demand cri-
teria of the message originator. When a consumer Y receives a PDM message, it checks
if its service demands are similar to that of the originator X . If so, it notifies X and X
adds Y as a new acquaintance entry in its acquaintance list. This entry contains iden-
tity of Y and its demands classified as similar demand by similarity criteria of X . The
consumer Y also forwards the request to a set of service consumers in its acquaintance
list if these consumers have similar demands with respect to similarity criteria in the
PDM message. If there is no such consumer, Y randomly selects consumers from its
acquaintance list. How long the request is going to be forwarded is controlled using a
time-to-live field. All other consumers that receive the request act the same way Y does.
When, Y receives a RAM message from the originator X , it checks its acquaintance
list for the consumers having similar demands with respect to similarity criteria in the
RAM message. Then, Y sends identities of these consumers to X . So, X can add these
consumers to its acquaintance list. After having sufficient number of acquaintances, the
consumer uses Request for Experience Message (REM) to collect new experiences. A
REM message also contains a rule for expressing similar demand criteria of the sender.
When service consumer Y gets a REM message from service consumer X , it evalu-
ates its service demands in its own experiences using the similarity criteria in the REM
and sends its experiences to X if these experiences have similar demands with respect
to similarity criteria in the REM . So, X can populate its repository with these experi-
ences. The details of the peer-to-peer discovery protocol is described elsewhere [5].

4 Service Selection Using Parametric Classification

Unlike subjective ratings, different AI techniques can be applied on objective experi-
ence data, because experiences contain much more comprehensive, detailed, and noise-
free information. Information in the experiences can be used for the modeling of
provider behaviors for different service demands. For this purpose, a parametric classi-
fication method, multivariate Gaussian model (GM), is used in our previous work [3].
In this method, a service consumer models each service provider by building a multi-
dimensional Gaussian model using the collected experience data. There are two classes

A Comparative Study of Reasoning Techniques for Service Selection 127

Algorithm 1
1: Check Experience Repository
2: while (Not Have Enough Experience) do
3: Check Acquaintance List
4: if (Not Have Enough Acquaintance) then
5: Get New Acquaintances: Using PDM or RAM
6: end if
7: Get Experiences: Using REM
8: end while
9: Select Provider Using Experiences

for each model: satisfied and dissatisfied. These classes represent the experiences in
which the supplied services are classified as satisfactory and unsatisfactory with respect
to the satisfaction criteria of the consumer. Then, for each of the models, a discriminant
function is defined to compute the probability of satisfaction [6]. The service consumer
performs this computation for every service provider and chooses the provider with the
highest satisfaction probability. Modeling of providers may require a high volume of
experiences concerning different providers. Collecting that many experiences may be
costly in terms of time and messaging complexity.

5 Case-Based Service Selection

Non-parametric methods such as case-based reasoning (CBR) can also be used for ser-
vice selection. CBR is an approach for problem solving and learning in which old prob-
lems and their solutions are encapsulated into a case structure and stored in a case-base.
When a new problem is encountered, the most similar past cases are retrieved from
the case-base and solutions in these cases are modified to conform to the new situa-
tion [7]. The idea is that if two problems are similar, the solutions to these problems
will probably be similar, too. The concept of similarity plays a crucial role in CBR.

The most important challenge in the CBR is the selection of metrics for the similar-
ity, because performance of CBR systems critically depends on these metrics. Another
challenge is that most CBR approaches are centralized. This implies that ill-constructed
metrics for the similarity could drastically affect the performance of the whole system.
The proposed approaches in Section 2 and Section 3 can be combined to construct a
context-aware, flexible and distributed CBR approach for the service selection. In this
approach, each consumer uses consumer society as a distributed case-base. Addition-
ally, unlike the classic CBR systems, each consumer can represent its own similarity
metrics using an OWL ontology and SWRL rules. Using this well defined similarity
metric, the consumer queries the consumer society for similar experiences using the
procedure explained in Section 3. After retrieving the similar experiences, the con-
sumer computes a score for each retrieved experience. The computation depends on the
following factors:

– Recency: The new experiences are preferred over old experiences since they are
likely to hold again in the near future. For this reason, each experience is assigned
a recency value. The newer the experience, the larger the recency value.

128 M. Şensoy and P. Yolum

– Similarity: This is a factor that measures the similarity of the current demand with
the examined experience. The similarity value ranges between 0 and 1, where 0
denotes total difference and 1 denotes identical demands.

– Satisfaction: This is an important factor that measures how satisfied the current con-
sumer agent would be, had it lived the examined experience itself. The consumer
evaluates the supplied service depending on its current service demand and its own
satisfaction criteria and obtains its expected degree of satisfaction.

We combine these factors using the formula below:

Si = recencyi × simi × sati (1)

where, Si is the computed score for the experience i, recencyi is the recency factor,
simi is the similarity factor and sati is the satisfaction factor. After computing the
scores for each experience, the consumer picks the experience with the highest score
and selects the provider supplying the service within this experience. This approach
is unique from different perspectives. To the best of our knowledge there is no CBR
system using OWL ontologies for the representation of cases and there is no distributed
CBR approach in which similarity metrics are defined individually by each user using
SWRL rules.

6 Simulations

In order to demonstrate the performance of the proposed methods, we implemented
a simulator and conducted simulations on it. In the simulator, three types of service
provider selection strategies are implemented and tested. Those strategies are shortly
explained below.

– Service Provider Selection Using CBR and Experiences (SPSCBR): This strat-
egy uses the proposed CBR approach for the service provider selection in Section 5.

– Service Provider Selection Using Gaussian Model (SPSGM): This strategy is
proposed in [3] and shortly explained in Section 4.

– Service Provider Selection Using Selective Ratings (SPSratings): For a new ser-
vice demand, a service consumer agent can select a service provider using ratings
from other consumer agents. Ratings reflect the aggregation of consumers’ entire
history of interactions with providers. In this strategy, in order to make satisfaction-
targeted decisions, a consumer requests ratings only from those consumers who
have similar demands with respect to similarity criteria of the consumer.

Essentially, all three strategies actually use information from the same service con-
sumers for a given decision process. These strategies are compared with each other
in terms of achieved satisfaction. In the simulations, if an agent decides to receive a
service, it uses these strategies to make three (possibly different) selections. As is the
case with real world, service consumers periodically change their service demands. If a
consumer does not have any previous experience related to her new demand, service de-
cisions become very hard. That is the most challenging situation in the problem we are
addressing. To focus on this challenge, the simulations enforce agents to make decisions
based on others’ experiences rather than their previous experiences.

A Comparative Study of Reasoning Techniques for Service Selection 129

6.1 Simulation Environment and Settings

In order to compare performance of the service provider selection strategies, a simulator
is implemented in Java and KAON2 is used as OWL-DL reasoner [8]. Simulations are
run on a PC with 1.8 GHz CPU and 256 MB RAM under Windows OS. Simulations
are repeated 10 times in order to increase the reliability. In the simulations, performance
of different strategies are measured using two metrics; computation time and average
satisfaction ratio, which is the ratio of service selections resulted in satisfaction on the
average.

Simulation environment is created using the same methodology in our previous
work [3]. Each property of Service class in the experience ontology has a predefined
range and represents a dimension in a multidimensional service space. Each service
provider has a randomly generated multi-dimensional region called service region in
this service space. Service region covers all of the services produced by the service
provider. When a service demand is made, the provider produces a service within its
service region so that the produced service will overlap with the service demand as
much as possible. Demand of a service consumer is generated as follows. Demand
space is constructed by removing dimensions of service space that do not belong to
Demand class. Then, for each consumer, a region named demand region is chosen
randomly. Center of this region represents the demanded service. If provided service
for this demand stays within the margins of the demand region, the service consumer
having this demand gets satisfied, otherwise she gets dissatisfied. So, consumers having
exactly the same service demand may have different satisfaction criteria.

When the simulations start, agents do not have any prior experiences. As the simula-
tions advance, agents gain and collect experiences. There are several, important factors
in the simulations:

Variations in service demand. Each service consumer changes its demand characteris-
tics after receiving a service with a predefined probability denoted as PCD and collects
experiences for its new demand. Each service consumer has a probability of requesting
a service for any epoch. This probability is uniformly chosen between 0 and 1. In other
words, only around 50% of consumers consume a service at a given epoch.

Variations in service satisfaction. Even though a service consumer X regards the ser-
vice demand of consumer Y as a similar demand, this does not mean that Y and X
share the same satisfaction criteria. Hence, a service dissatisfying Y may satisfy X and
vice versa. This fact is also imitated in the simulations. A parameter called misleading
similarity factor (β) defines what ratio of the service consumers having similar service
demands with respect to similarity criteria of X will have satisfaction criteria conflict-
ing with the satisfaction criteria of X . So, ratings of these consumers will probably
mislead the consumer X during service selection.

Variations in service quality. Some providers may have nondeterministic nature and
may supply marginally different services at different instances of time for the same ser-
vice demand and conditions. In our simulations, with a very small probability, providers
deviate from their expected behavior. This probability is called probability of indeter-
minism (PI). Think of a provider who usually produces unsatisfactory services for a

130 M. Şensoy and P. Yolum

specific service demand. If this provider produces a perfect service for this service de-
mand in a transaction with a consumer, this kind of indeterminism may mislead the
consumers in their future decisions. So, PI is an important parameter in our simula-
tions.

By varying the aforementioned factors (i.e., service demand; service satisfaction; and
service quality), we are interested in understanding the strengths and weaknesses of the
proposed strategies. The simulation environment is setup with 20 service providers and
400 service consumers. Simulations are run for 100 epochs. Experiences expire after 20
epochs to keep experience repositories fresh and small. The ratio of satisfaction and the
required computational time for selecting services are used as metrics to evaluate each
strategy.

6.2 Simulation Results

This section summarizes the results of the simulations. There are three primary parame-
ters in the simulations: PCD, β and PI . Initially, PI is set to 0. Note that this shows that
the service providers always provide the same quality of service. After setting PI to 0,
we measure the average satisfaction ratio of the strategies when β equals 0 and 0.5 as
well as when PCD varies from 0 to 1. Remember that the PCD value denotes how much
service consumers change their demands. In Table 1, we immediately note that for all
values of PCD, both SPSGM and SPSCBR achieve a high average satisfaction ratio,
while SPSratings achieves a decreasing average satisfaction ratio. We had observed
this behavior also in our previous work [3]. When consumers change their demands
frequently, the ratings they communicate to others about their service dealings may not
coincide with the service demands of others. This causes a drop in the average satis-
faction ratio. Similarly, when the β value is increased, there will be many consumers
with similar demands but different satisfaction criteria. Hence, receiving ratings based
on demand will not guarantee satisfaction. Since, SPSratings is not robust to variations
on β and PCD, it cannot be used in real life settings. Unlike the rating-based approaches
such as SPSratings, SPSGM and SPSCBR are robust to β and PCD. Moreover, for
PI=0, performance of these two strategies are impressive and equivalent. Hence, we
continue our experimentation with studies of SPSGM and SPSCBR.

Table 1. Average ratio of satisfaction with respect to different β and PCD values, given PI=0

PCD SPSGM SPSCBR SPSratings

β = 0 β = 0.5 β = 0 β = 0.5 β = 0 β = 0.5

0.0 0.97 0.97 0.96 0.97 0.95 0.53
0.1 0.97 0.96 0.94 0.96 0.72 0.35
0.2 0.97 0.97 0.95 0.96 0.56 0.28
0.4 0.98 0.98 0.96 0.97 0.42 0.18
0.6 0.98 0.97 0.95 0.95 0.37 0.15
0.8 0.97 0.98 0.97 0.98 0.32 0.13
1.0 0.98 0.98 0.96 0.97 0.28 0.12

A Comparative Study of Reasoning Techniques for Service Selection 131

Although the performance of SPSGM and SPSCBR are almost the same, the time
they use to select the providers are different. Figure 1 shows the time consumed by each
approach for different number of experiences. For small number of experiences, the
time required by these approaches looks similar. However, as the number of experiences
increases, the time consumed by SPSGM exceeds the time consumed by SPSCBR

dramatically. For the modeling of consumers using GM, size of dataset, namely number
of experiences, is important. Size of the data set should be large enough to remove the
bias [6]. However, increasing the number of experiences will increase the time required
for the computations considerably.

Fig. 1. Time consumed by GM and CBR for different number of experiences

Note that so far we assumed that PI equals to 0, which means that there is no in-
determinism in the behavior of providers. So, a provider will either satisfy or dissatisfy
a specific service demand all the time. In the settings where behaviors of providers are
predictable and free of indeterminism, SPSCBR can easily replace SPSGM . More-
over, in terms of computational efficiency, SPSCBR outperforms SPSGM in these
settings. By knowing almost the same or highly similar service demands and the corre-
sponding services supplied by the providers for these demands in the past, a consumer
can easily make correct service decisions using SPSCBR. In the origin of the CBR
approach, there is an assumption that if a provider satisfies a service demand which
is very similar to or the same as the current demand of a consumer, the provider will
probably satisfy the consumer’s demand, too. When PI is set to zero, this assumption
always holds. Providers produce similar services for the same or very similar service
demands. These services deviate insignificantly from each other so that the deviation
does not considerably affect the consumers’ degree of satisfaction. However, in realistic
environments, some providers may infrequently provide marginally different services
for the same or similar service demands. The experiences containing these service in-
stances may be misleading for the consumers. In order to simulate this situation, PI is
set to very small probability values. In our simulations, each provider deviates from its
usual service characteristic in favor of consumers with these probabilities.

132 M. Şensoy and P. Yolum

Figure 2 and Figure 3 show simulation results for PI = 0.001 and PI = 0.01, respec-
tively. The performance of SPSCBR in terms of archived satisfaction is sensitive to PI
parameter and considerably decreases with an increase in the value of PI . However,
the performance of SPSGM is robust to variations in PI . In other words, performance
of SPSGM does not change with changing PI and it is constant around 100% sat-
isfaction. The performance of SPSCBR further decreases with time, since each time
new misleading experiences are added to the environment, the number of misleading
experiences increases with time.

Fig. 2. Simulation results for PI = 0.001

Fig. 3. Simulation results for PI = 0.01

7 Discussion

Previous research on service selection is mainly based on ratings, which depend on sub-
jective opinions of the raters. We propose to use ontology-based objective experience
data instead of subjective ratings. In our model, service consumers collect experiences

A Comparative Study of Reasoning Techniques for Service Selection 133

from other service consumers with similar service demands and then different meth-
ods can be applied on the experiences to make services selections. We have previously
proposed to use GM strategy on top of the experience data.

In this paper, we propose a variation by replacing the Gaussian model with case-
based reasoning. Through simulations, we show that both CBR and GM increase the
overall satisfaction significantly compared with the rating-based strategy. If indetermin-
ism is observed, GM outperforms CBR in terms of average satisfaction ratio. However,
CBR runs faster than GM and thus can find service providers in a shorter time.

Yolum and Singh study properties of referral networks for service selection, where
referrals are used among the service consumers to locate the service providers [9]. Cur-
rent applications of referral networks also rely on exchanging ratings. It would be inter-
esting to combine referral networks with the ontology representation here so that agents
can exploit the power of ontologies for knowledge representation as well as referrals for
accurate routing.

Maximilien and Singh develop a QoS ontology to represent the quality levels of
service agents and the preferences of the consumers [10]. Their representation of QoS
attributes is richer (such as availability, capacity, and so on). However, their system does
not allow reasoning by agents individually as we have developed here. Their ontology
can be used as a supplementary ontology to represent and enrich Quality concept in
the experience ontology.

CBR is used in centralized recommendation systems to automatically estimate con-
sumer preferences. Aguzzoli et. al. propose a collaborative cased-based recommenda-
tion system for the music market [11]. The proposed system is hosted by an online
shopping site. During their online shopping, consumers choose sound tracks and add
them to their shopping chart, which is called a partial compilation. The system inspects
the partial compilation of a consumer and recommends new sound tracks using a case-
base. This case-base is composed of the recorded compilations of consumers, who have
previously visited the website and used this system. Matching of sound tracks between
the partial compilation and the compilations in the case-base is used for the compu-
tation of similarity between compilations. Then, sound tracks included in the similar
compilations are recommended to the consumer. A similar approach for recommend-
ing restaurants is proposed by Burke [12]. This system is hosted by a website, which
records the browsed restaurants as cases and recommends new restaurants to the users
depending on their browsing histories.

Limthanmaphon and Zhang propose a web service composition approach that uses
CBR for service discovery [13]. Definitions of previous composite service cases are
stored in a case-base. Definition of a composite service includes the set of sub-services
it includes and relationships between these sub-services. When a user comes up with a
new request for a composite service, similarity measure is used to find the closest cases
in the case-base. Their similarity is measured by matching the definitions of composite
services. Then, the previous service with the highest similarity value is suggested to the
user.

As a future work, we plan to study other reasoning methods for service selection and
compare their performances with the strategies that we have examined here.

134 M. Şensoy and P. Yolum

References

1. eBay (1995), http://www.ebay.com
2. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In: Pro-

ceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pp. 475–482 (2002)

3. Sensoy, M., Yolum, P.: A context-aware approach for service selection using ontologies. In:
Proceedings of Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (2006)

4. SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)
5. Sensoy, M., Yolum, P.: Experience-based service provider selection in agent-mediated e-

commerce. Engineering Applications of Artificial Intelligence (in press, 2006)
6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, West Sussex

(2001)
7. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-

tions, and system approaches. Artificial Intelligence Communications 7, 39–59 (1994)
8. KAON2: Kaon2 web site (2005),http://kaon2.semanticweb.org
9. Yolum, P., Singh, M.P.: Engineering self-organizing referral networks for trustworthy service

selection. IEEE Transactions on Systems, Man, and Cybernetics A35, 396–407 (2005)
10. Maximilien, M., Singh, M.P.: A framework and ontology for dynamic web services selection.

IEEE Internet Computing 8, 84–93 (2004)
11. Aguzzoli, S., Avesani, P., Massa, P.: Collaborative case-based recommendation systems. In:

Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, Springer, Heidelberg
(2002)

12. Burke, R.: A case-based reasoning approach to collaborative filtering. In: Advances in Case-
Based Reasoning, pp. 370–379. Springer, Heidelberg (2000)

13. Limthanmaphon, B., Zhang, Y.: Web service composition with case-based reasoning. In:
Australasian Database Conference, pp. 201–208 (2003)

PROSA: P2P Resource Organisation by Social
Acquaintances

Vincenza Carchiolo, Michele Malgeri, Giuseppe Mangioni, and Vincenzo Nicosia

Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
Facoltà di Ingegneria – Università di Catania

Viale A. Doria 6 – 95100 Catania, Italy
{car,malgeri,gmangioni,vnicosia}@diit.unict.it

Abstract. P2P overlay networks have been deeply studied in the last few years.
The main problems of such networks are resources distribution and retrieving.
In this paper PROSA is presented. It is based on a novel adaptive algorithm to
build an efficient and semantically searchable P2P system. This algorithm is in-
spired by human relationships, since social communities possess some interesting
properties (such as being “small–worlds”) that allow fast and efficient routing of
queries for resources.

1 Introduction

Peer-to-Peer (P2P) systems are computer networks where all hosts have the same func-
tionalities and role. In P2P networks there is no difference between “client” hosts and
“servers”: a peer acts as a “client” host if it requests a resource from the network, and it
acts as a “server” if it is requested a resource it is sharing. From this point of view, P2P
networks differ a lot from Internet and, in general, from client–server networks.

In the last years the interest for overlay P2P networks has increased, mainly because
bandwidth, computing power and cheapness of personal computers allow to implement
such kind of “logic” networks. Examples of overlay networks include Gnutella, Freenet
[1], CAN [2], Tapestry [3]. Each of them focuses on a particular aspect of P2P comput-
ing: Gnutella is totally unstructured, Freenet is practically anonymous, CAN is search–
efficient and so on.

Some P2P structures proposed till now face the problem of efficient resources re-
trieval. In particular one of the more desirable feature in a P2P network is the possi-
bility to perform query based on semantic resource description. Semantic queries are
interesting because they are similar to the natural way a user describe concepts.

In unstructured networks, such as Gnutella, semantic query for resource can be per-
formed, but for each request most part of the network is flooded, and there are no re-
sponse guarantees either if the requested resource is present ([4]). In networks organised
as Distributed Hash Tables (DHT) [1][2][3] semantic queries are not allowed, since re-
sources are described by a certain hash of their content or description, so no “semantic
proximity” can be neither defined nor used to discover them.

Some recent works [5][6] proposed to organise a P2P network in semantic groups
of “similar” peers, to facilitate resource search and retrieval based on semantic queries.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 135–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

136 V. Carchiolo et al.

Our attempt is to define a P2P structure in which semantic proximity of resources is
mapped onto topological proximity of peers. We propose a P2P network named PROSA
inspired by social relationships and their dynamics, because social networks character-
istics can be exploited to optimise query forwarding and answering. The paper is organ-
ised as follows: in Section 2 we point out some interesting aspects of social networks;
in Section 3 we show how social relationships arise and how can be used to speed up
information retrieval; in Section 4 we discuss our proposal and Section 5 presents a plan
for future work.

2 Social Relationships and Small–World

The way social contacts and relationships are arranged, how they evolve and how they
end, is matter for psychologists and social scientists research. Nevertheless some stud-
ies about social groups and their connections reveal that a “social network”, i.e. the net-
work of relationships among people from simple acquaintance to friendship, has many
interesting properties that can be exploited in a real–world P2P structure. The Milgram
experiment of 1966 [7] showed that a message from a “source” to a “destination” person
can be delivered by forwarding it step–by–step to just one of the related people, in the
direction of the destination. This experiment opened the research in the field of “small–
world” networks [8]. A small–world network presents both small network diameter (i.e.
the maximum distance, in number of hops, between two generic nodes of the network)
and high clustering degree (i.e. good connections among similar or related nodes). The
small–world property seems to be a characteristic of many human communities, such
as mathematicians, actors, scientists. Our target is to develop a P2P system using rules
and concepts inspired by human behaviours and relationships dynamics.

3 The Social Model

At the beginning of his life, a child has a small number of “social connections”: his
relatives. These contacts are the only interface between the baby and the outside world
and are sufficient to a baby to grow. When a child goes to school, he is introduced to
his teachers and class-friends. These relations are new “social links”. We can call them
“acquaintance–links”. Having an acquaintance–link with somebody requires simply to
know him. Naturally, not all social links have the same importance: if a child needs
to solve a mathematic problem he will probably ask help to his math teacher or to the
top student of the class (both of them being acquaintance–links), not to a randomly
chosen person. Since the top student of the class probably can be useful in solving math
problems, he becomes a “semantic–link” in the field of math for our child. Note that
a semantic–link is not symmetric because the child knows that the math teacher is an
expertise in the field of math (he solved some problems the child was not able to solve),
but the teacher considers the child no more than a person that is probably interested in
math (a simple acquaintance–link!): if he is not able to solve a math problem, he will
not ask the child, but probably a colleague.

It is clear that a semantic–link is more than a simple acquaintance–link: having a
semantic–link with somebody requires at least an acquaintance–link plus some

PROSA: P2P Resource Organisation by Social Acquaintances 137

additional information about his interests, culture, abilities, knowledge etc. In real life
no great effort is needed in order to establish a semantic–link with somebody: you have
just to share a knowledge field or a passion or simply an interest with a person and
meet him in some circumstances, have a talk with him and no more. Once you know
somebody shares a certain knowledge or passion with you, a semantic–link in that field
with that person is established and you’re ready to use that link the next time you need
information, help, assistance or collaboration in that field. In real life we massively use
semantic–links to speed up information retrieval. PROSA uses the social model as a ref-
erence to build an efficient small–world semantic–searchable P2P network, exploiting
the power of social links.

4 Building a Social P2P Network

In a P2P system the performance of searching and retrieving resources is heavily de-
pendent on the organisation of the network.

Our target is to create a P2P network based on acquaintance– and semantic–links,
where peers join the network in a way similar to a “birth”, then achieve more links
to other peers according to the social model, i.e. by linking (semantically) with peers
which have similar interests, culture, hobbies, works and so on, and maintaining a cer-
tain number of “random” acquaintances. If PROSA catches the dynamics of the social
model, the resulting network should be a small–world. To implement such a model we
need i) a system to model knowledge, culture, interests, and ii) a network management
algorithm as much as possible similar to the social model.

4.1 Modelling Knowledge

In PROSA , knowledge (each resource shared by peers) is represented using the Vector
Space Model (VSM) . In this approach each document is represented by a state–vector
of (stemmed) terms called Document Vector (DV); each term in the vector is assigned
a weight based on the relevance of the term itself inside the document. This weight is
calculated using a modified version of TF–IDF [9] schema, as follows:

wt = 1 + log(ft) (1)

where ft is the term frequency in the document. It has been proved [10] that this way of
calculating relevance is a good approximation of TF–IDF ranking schema. The VSM
representation of a document is necessary to calculate the relevance of a document with
respect to a certain query. We model a query by means of a so–called Query Vector
(QV), that is the VSM representation of the query itself. Since both documents and
queries are represented by state–vectors, we define the relevance of a document (D)
with respect to a given query (Q) as follows:

r(D, Q) =
∑

t∈D∩Q

wt,D · wt,Q (2)

Using VSM we obtain also a compact description of a peer knowledge. This description
is called “Peer-Vector” (PV), and is computed as follows:

138 V. Carchiolo et al.

- For each document hosted by the peer, the frequencies of terms it contains are
computed (Ft,D).

- Terms frequencies for different documents are summed together, obtaining overall
frequency for each term:

Ft =
∑

t

Ft,D

- Then a weight is computed for each term, using:

wt = 1 + log(Ft)

- Finally all weights are put into a state–vector and the vector is normalised.

The obtained PV is a sort of “snapshot” of the peer knowledge, since it contains infor-
mation about the relevant terms of the documents it shares. The relevance of a peer (P)
with respect to a given query (Q) is defined as follows:

r(P, Q) =
∑

t∈P∩Q

wt,P · wt,Q (3)

This relevance is used by the PROSA query routing algorithm. It is worth noting that a
high relevance between a QV and a PV means that probably the given peer has docu-
ments that can match the query.

VSM is an effective way to represent a peer knowledge. If we take a look at a typical
DV, we can see that it gives an idea of the corresponding document. For example in
figure 1 the DV corresponding to the manual page of the Unix command “mount” is
shown.

valu

option
file

mount

system

filesystemdefault

 0
 0 5 10 15 20

"data.txt"

Fig. 1. A sample DV

You can see that the most relevant (stemmed) terms are: mount, file, option, system,
valu, default, filesystem. Just six or seven terms give a precise idea of what kind of
document we are dealing with. On the other hand if a user is searching for help about the
“mount” command, he will probably build a query containing these terms, for example
“mount default filesystem”; if a user is searching info about compiling sources with gcc,
his query could look like “gcc compile source”. The relevance of the first query with the
“mount” manual page is about 0.014. The relevance of the second query is zero, since
the document doesn’t contain those terms (and it is not related with compiling source
code!). So we can argue that the VSM is a good choice to rank resources with respect
to a given query.

PROSA: P2P Resource Organisation by Social Acquaintances 139

4.2 Managing Connections

In PROSA we want to use some principles inspired by observations about natural evo-
lution of social groups. In particular we want to simulate the way people “link” to other
people. As stated above, relationships among people are usually based on similarities
in interests, culture, hobbies, knowledge and so on. And usually these kind of links
evolve from simple “acquaintance–links” to what we called “semantic–links”. To im-
plement this behaviour three types of links are introduced: i) Acquaintance–Link (AL)
ii) Temporary Semantic–Link (TSL) iii) Full Semantic–Link (FSL). TSLs represent re-
lationships based on a partial knowledge of a peer. They are usually stronger than ALs
and weaker than FSLs.

Since relationships are not symmetric (remember the case of the child and the
teacher), it is necessary to specify what are the source peer (SP) and destination peer
(DP) of a link. Figure 2(a) shows the representations for the three different types of
links.

Remembering links. To efficiently use the right link in any given situation, each peer
maintains a list of known peers, that we call Peer List (PL). Each entry of the PL con-
tains two fields: an address and a vector. For example, if the network overlays a TCP/IP
network, the address of the linked peer is the couple IP address/TCP port. If the link is
a simple AL, the peers doesn’t know the corresponding PV: in this case an empty PV is
placed into the vector field. If the link is a TSL, then the peer doesn’t know the PV of
the linked peer, but a Temporary Peer Vector (TPV) is built based on the query received
in the past from that peer. Finally, if the link is a FSL, the PV is put in the vector field.

A new peer was born. A new peer which wants to join PROSA , just searches other
peers (for example using broadcasting, or by selecting them from a list of peer that are
supposed to be up, as in Freenet or Gnutella) and adds some of them in his PL as ALs.
The joining phase is represented in figure 2(b), where “N” is the new peer; N chose
some other peers (P) at random as initial ALs. These peers are connected, via ALs,
TSLs or FSLs to other peers into PROSA , and allow N to start forwarding queries until
it meets other peers.

Links dynamics. In PROSA links dynamics are strictly related to queries. When a
user of PROSA requires a resource, he performs a query and specify a certain number

SP DP

SP DP

SP DP

Aquaintance Link

Temporary Semantic Link

Full Semantic Link

(a) Link Types

PROSA

P

P

P

N

AL

AL

AL

(b) A new node joining PROSA

Fig. 2.

140 V. Carchiolo et al.

of results he wants to obtain. The relevance of the query with the resources hosted by
the user’s peer is first evaluated, using equation 2. If none of the hosted resources has
a sufficient relevance with respect to the query, the query has to be forwarded to other
peers. The mechanism is quite simple:

- A query message containing the QV, a unique QueryID, the source address and the
required number of results is built.

- If the peer has neither FSLs nor TSL, i.e. it has just AL, the query message is
forwarded to one link at random.

- Otherwise, the peer computes the relevance between the query and each entry of
his Peers–List.

- It selects the link with a higher relevance, if it exists, and forward the query message
to it.

When a peer receives a query forwarded by another peer, it first updates its PL. If the
requesting peer is an unknown peer, a new TSL to that peer is added in the PL, and the
QV becomes the corresponding Temporary Peer Vector (TPV). If the requesting peer is
a TSL for the peer that receives the query, the corresponding TPV in the list is updated,
adding the received QV and normalising the result. If the requesting peer is a FSL, its
PV is in the PL yet, and no updates are necessary. 1 After PL update, the relevance of
the query and the peer resources is computed. There are three possible cases:

- No document has a sufficient relevance. In this case the query is forwarded to an-
other peer, according to link relevance.

- The peer has a certain number of relevant documents, but they are not enough to
full-fill the request. In this case a response message is sent to the requester peer,
specifying the number of matching documents and the corresponding relevance.
The message query is forwarded to all the links in the PL whose relevance with the
query is higher than a given threshold (semantic flooding). The number of matched
resources is subtracted from the number of total requested documents before for-
warding.

- The peer has sufficient relevant documents to full-fill the request. In this case a
result message is sent to the requesting peer and the query is no more forwarded.

This situation is showed in figure 3(a), where peer “N” forwards a query to one of his
ALs randomly chosen, since it has niether TSLs nor FSLs. In our example the chosen
peer is “P1”. As soon as P1 receives the QV, it automatically establish a TSL with N
(see figure 3(a)) and then it forwards the query if needed. When the requesting peer
receives a response message it presents the results to the user. If the user decides to
download a certain resource from another peer, the requesting peer contacts the peer
owning that resource and asks it for download. If download is accepted, the resource
is sent to the requesting peer, together with the Peer Vector of the serving peer. This
case is illustrated in figure 3(b), where peer “N” received a response from peer “Pr”

1 In PROSA a TPV is similar to a “hint”; the assumption made here is that a peer querying for a
certain resource would eventually find it, and could successfully answer similar queries in the
future. So it makes sense to save a weak link to a querying peer, since that link could be useful
to answer future queries.

PROSA: P2P Resource Organisation by Social Acquaintances 141

PROSA

P

P

P

P

P

N

r

1

(a) Query forwarding: new TSL arise

PROSA

P

P

P

P

P

N

r

(b) Query forwarding: new FSL arises

Fig. 3.

and decided to download the corresponding resource. Note that Pr established a TSL
with N, because it received a QV from it, and N established a FSL with Pr, because it
successfully received a resource from it.

4.3 Comments on the Algorithm

The algorithm presented in Sections 4.1 and 4.2 is an attempt to model human relation-
ships and their behaviour in a P2P system.

The network management system used in PROSA , allows links to move from simple
acquaintance to weak relationship, and the algorithm proposed works in a way similar
to relationships dynamics in real world. A Temporary Peer Vector can be considered as
a partial description of a person you don’t know very well. It’s just an approximation,
but is is better than nothing. It is also worth noting that the proposed algorithm allows
the growth of fuzzy “semantic groups”. A semantic group is a group of peers with simi-
lar knowledges. It is the algorithmic transposition of “social groups”. In real life people
may belong to different social groups, according to their interests. Peers that are “in-
terested” in a particular topic, usually perform query in that topic. When they receive
responses, they acquire new semantic links to peers sharing resources belonging to that
topic. This is quite similar to “moving” in the direction of the semantic group made of
all the peers sharing that kind of knowledge. On the other hand, if a peer changes his
interests (i.e. if different topics are required) it smoothly “discards” links to unwanted
topics, because the size of the PL is limited: if new semantic links are put into the PL,
the old ones will be gradually pushed out. The PL represent the current “social” state
of a peer, a “snapshot” of the semantic groups he belongs to.

5 Conclusions and Future Work

In this paper a novel adaption algorithm for P2P system organisation has been pre-
sented. The algorithm is heavily based on observation of the social world. In particular
it emulates the way social relationships among people naturally arise and evolve. Our
hope is that the resulting system could present some of the desirable properties of social

142 V. Carchiolo et al.

communities, in particular the “small–world” characteristic, which is peculiar of social
groups and allow efficient routing and high clustering.

The next step is to develop a simulator of PROSA to test the described algorithm. In
particular we are going to check if similar peers are clustered together to form “semantic
groups” and “social communities”. Another interesting research is measuring the quality
of responses to query, in terms of both quantity and relevance. We are also going to
introduce weighted links among peers, since not all social relationships have the same
relevance in a person life, and this can heavily impact on the quality of social groups.

References

1. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous infor-
mation storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, Springer, Heidelberg (2001)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable
network. Technical Report TR-00-010, Berkeley, CA (2000)

3. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley (2001)

4. Loo, B., Huebsch, R., Stoica, I., Hellerstein, J.: The case for a hybrid p2p search infrastruc-
ture. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, Springer, Heidel-
berg (2005)

5. Bawa, M., Manku, G.S., Raghavan, P.: Sets: search enhanced by topic segmentation. In: SI-
GIR 2003: Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, pp. 306–313. ACM Press, New York (2003)

6. Zhu, Y., Yang, X., Hu, Y.: Making search efficient on gnutella-like p2p systems. In: Parallel
and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International, pp.
56a–56a. IEEE Computer Society, Los Alamitos (2005)

7. Milgram, S.: The small world problem. Psychol Today 2, 60–67 (1967)
8. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–

442 (1998)
9. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Technical

report, Ithaca, NY, USA (1987)
10. Schutze, H., Silverstein, C.: A comparison of projections for efficient document clustering.

In: Prooceedings of ACM SIGIR, Philadelphia, PA, pp. 74–81 (1997)

Reliable P2P File Sharing Service

Jung-Hwa Shin1, Weon Shin2, and Kyung-Hyune Rhee3,�

1 Department of Computer Science, Pukyong National University,
599-1 Daeyeon 3-Dong Nam-Gu,

Busan, 608-737, Republic of Korea
shinjh@pknu.ac.kr

2 Department of Information Security, TongMyung University,
535 Yongdang Dong Nam-Gu,

Busan, 608-711, Republic of Korea
shinweon@tu.ac.kr

3 Division of Electronic, Computer and Telecommunication Engineering, Pukyong
National University
khrhee@pknu.ac.kr

Abstract. A P2P service is a popular for sharing various information
through direct connection among two or more peer entities. This service
which does not require a dedicated server can be used for finding and
exchanging information freely. P2P file sharing systems have become
popular as a new paradigm for information exchange. All users who use
file sharing service can use shared files of each other freely by equal
access privilege. Therefore, P2P file sharing service can suffer from free
rider that only downloading without sharing on file. Also, some users
can provide malicious files such as virus, worm. Recently, reputation
information has been used to solve these problems. Hence, we propose
the reliable P2P file sharing service model that can restrict a “free rider”
and guarantee the reliability of shared files and users using reputation
information.

1 Introduction

A P2P network is a computer network that does not have fixed clients and
servers but a number of peer nodes that function as both clients and servers
to the other nodes in the networks. By the nature of its architecture, a P2P
file sharing systems provide an open and unrestricted environment for content
sharing. However, this openness also makes it an ideal environment for attackers
to spread their malicious contents. Also, P2P networks introduce a range of
security threats, as they can be used to spread malicious software, such as viruses
and Trojan horses, and easily bypass firewalls. And, there is also evidence that
P2P networks suffer from free riding. Reputation systems are well suited to fight
these problems. Reputation-based systems are widely used to establish trust
among the members of on-line communities where the parties have no prior

� Corresponding author.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 143–150, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

144 J.-H. Shin, W. Shin, and K.-H Rhee

knowledge of each other [1]. A user can evaluate the party it dealt with after a
transaction, and the accumulation of such evaluations makes up a “reputation”
for the involved parties. By these records of earlier transactions, a new user is able
to distinguish the trustworthy parties from untrustworthy ones. In this paper,
we can decrease the impact of free rider using trust value based on reputation
information. Also, we can restrict use of shared files against users that provide
harmful files such as virus or worm, low quality file, or file whose contents have
no connection with the title. The rest of this paper is organized as following: In
section 2, we describe the concept of P2P, the considerations in P2P file sharing
service, and reputation-based file sharing systems. In section 3, we describe a
reliable P2P file sharing service model using trust value. In section 4, we analyze
the proposed model and conclude in section 5.

2 Related Works

2.1 Peer-to-Peer

P2P computing is a novel Internet-based computing paradigm which is being
studied widely in recent years. In P2P systems, peers are acting as service con-
sumer and provider simultaneously. Two main architectures of P2P networks are
available today, the pure P2P model and the hybrid model [2][3]. Pure P2P mod-
els are decentralized without any central server. This kind of system is built on
participating peers only, connected to each other. No central administrator unit
will be involved to distribute information within the community. The network
environment will be formed automatically when peers log into the system and
establish connections to other peers. Hybrid P2P models are centralized in the
sense that they depend on some central server. This model have the one-point
failure problem. The server is not holding any data itself, it is mainly used to
organize the network. According to system function, current P2P systems can
be classified to three categories : file sharing, distributed processing and instant
messaging. In this paper, we focus on the file sharing service.

2.2 The Consideration in P2P File Sharing Service

In P2P file sharing, the balance between resource providers and consumers must
be considered. Like their counterparts in the real world, P2P communities de-
pend on the presence of a sufficient base of communal participation and cooper-
ation in order to function successfully. But, in the P2P context, this might mean
downloading files but not sharing any for upload, or initiating queries without
forwarding or answering queries from others. At best, such behavior just means
increased load for everyone else; at worst, it can significantly harm the function-
ing of the system. A recent study on Gnutella file sharing system shows that as
many as 70% of its users don’t share any files at all [4]. This means that these
users use the system for free. This behavior of an individual user who uses the
system resources without contributing anything to the system is the first form

Reliable P2P File Sharing Service 145

of the Free Riding problem. Such users are referred to as free riders. Free riders
use the resources available in the P2P network, but do not make any resources
available. Free riding reduces the availability of information as well as the level
of network performance [5][6]. Reputation can be used to solve the “free riding”
in P2P file public ownership service as file or information that can display believ-
ability about user. It collects and aggregates the feedback of participants’ past
behaviors, which is known as reputation, and publishes the reputations so that
everyone can view it freely. The reputation informs the participant about other’s
ability and disposition, and helps the participant to decide who to trust. Fur-
thermore, reputation system also encourages participant to be more trustworthy
and discourages those who are not trust worthy.

2.3 Reputation-Based File Sharing System

Reputation, a summary of a peer’s past behavior, is a powerful tool for predicting
the peer’s future action. The reputation scheme helps to build trust among peers
based on their past experiences and feedback from other peers. The reputation
values will be used as selection criteria among peers. The goal of reputation is
to maximize user satisfaction, and decrease the sharing of corrupted files.

Kazaa [7] defines a participation level for each peer based on the Mbytes it
transfers and the integrity of the files it serves. Each user rates the integrity of the
files it downloads as excellent, average, poor, or delete file. Based on the ratio of
Mbytes uploaded and downloaded and the integrity rating of the files, the peers
are assigned to three categories: low, medium, and high. The participation level
score varies between 0 and 1000. A new user starts at a medium participation
level of 100. The participation level score is used in prioritizing among peers
during periods of high demand. The security aspects in peers modifying their
locally stored participation level values are not addressed.

EigenRep [8] is a reputation management system for P2P networks. Each peer
locally stores its own view of the reputation of the peers it does transactions with.
The global reputation of each peer is computed by using the local reputation
values assigned to it by other peers, but weighted by the global reputation of the
assigning peers. This method of reputation inference rules out the possibility of
malicious peers maligning the reputation of other peers.

3 Reliable P2P File Sharing Service Model

Our model based on hybrid P2P model. We intend to solve the “free riding”
problem and guarantee the reliability of shared files and users using trust value
based on reputation information. Also, we can restrict use of shared files against
peers that provide harmful files. In our model, the server manages the trust
value and shared file list on peers. When any peers query about specific files to
the server, the server notifies a peer list and trust value on peers. File requester
refers to their trust and select a target peer and request the file download to
selected peer. File provider can permit or deny downloading by comparing the
trust value of itself with the trust value of provider.

146 J.-H. Shin, W. Shin, and K.-H Rhee

3.1 Notations

– MS : Management Server
– PX : the identity of peer
– fi : shared file list
– rold : the latest reputation value
– rnew : the new reputation value
– fnold : a number of shared files before transaction
– fnnew : a number of shared files after transaction
– GRold : the sum of good reputation before transaction
– GRnew : the sum of good reputation after transaction
– BRold : the sum of bad reputation before transaction
– BRnew : the sum of bad reputation after transaction
– TPX : trust value of peers
– dn : the speed of download
– αX : the ratio of shared files

3.2 Operations

The proposed scheme consists of four steps. At the first step, peers log in the
server and register list of sharing files into the server. The second step is a query
and response. Peers query to obtain a file and received a response from the
server. The third step is download on the file and final step is evaluation on the
file and update of the reputation and trust value.

[Step 1] Login and Registration

1. Pi...Pn → MS : Login, MS → Pi...Pn : Success
Peers log in the server and the server identifies a correct user, and then sends
the message that login is successful.

2. Pi...Pn → MS : Register (fi...fn)
Peers receive a response message from the server and register the file list
that they want to share with other peers. The server maintains following
information on peers.

〈Pi...Pn, fi...fn, TPi...TPn〉

[Step 2] Query and Response

1. Pi → MS : Query(f)
The Pi sends a query to obtain a file to the server.

2. MS → Pi : Info((Pi, TPi), ..., (Pn, TPn))
The server sends the peer list and their trust value.

Reliable P2P File Sharing Service 147

Fig. 1. Download and Evaluation

[Step 3] Download

Fig. 1 depicts the operation of download and evaluation on file.

1. The Pi chooses a peer by referring to trust value of peers and requests in-
formation for connection to the peer.

2. MS → Pi : Send(IPPj , pnPj)
The server sends the message including IP address and port number of the
Pj .

3. Pi → Pj : Request(f)
The Pi sends the message about file download to the Pj using the informa-
tion received from the server.

4. Pj → MS : Request(TPi, TPj)
Before the Pj permit downloading to the Pi, he requests the trust value of
the Pi and Pj to the server.

5. Pj : Compare(TPi, TPj)
The server sends the trust value to the Pj and Pj compare itself trust value
with the trust value of Pi.

6. Pj → Pi : download accept/deny
If the trust value of the Pi is greater than the trust value of the Pj , the Pj

permit the downloading, else denies it.

TPi ≥ TPj : permit downloading request
TPi < TPj : deny downloading request

148 J.-H. Shin, W. Shin, and K.-H Rhee

By the trust value is the value that reflect on good reputation and bad repu-
tation, peer can select the target peer by means of verification of the trust value
and he decides the download request through the comparison of trust value.

[Step 4] Evaluation and Update

1. Since it can happen the situation that the Pi does not send the reputation
value on the Pj , after the download is finished, the Pj notifies the finish of
transaction to the Server.

2. Pi → MS : Send(rPj : 1 or −1)
After the Pi executes and verifies the downloaded file, sends the reputation
on the Pj . If the file is executed correctly and is identical with the requesting
file, the Pi sends 1, otherwise -1. The server receives the transaction finish
message from the Pj . And then, if the server does not receive the reputation
value of the Pj for a specified period of time, he increased the bad reputation
value of the Pi by the ratio of shared files.

3. MS : Update(GRPi , BRPi , TPi, αPi , GRPj , BRPj , TPj, αPi)
The server updates the reputation value and trust value of the Pj using
evaluation value received from the Pi. We can divide update method into
four state according to reputation value received from latest reputation and
current reputation of the Pj . Table 1 depicts the update of reputation value
on file provider.

Table 1. Reputation update of the file provider

rold rnew GR BR

1 1 GRold + |rnew| ∗ α BRold

1 -1 GRold BRold + |rnew |
-1 1 GRold + |rnew| BRold

-1 -1 GRold BRold + |rnew | ∗ α

If the Pj received the good evaluation from latest transaction and current
transaction, we increased by α the good reputation of the Pj . On the other
hand, if the Pj received the bad evaluation from latest transaction and cur-
rent transaction, we increased by α the bad reputation of the Pj . If peers
received different evaluation value from latest transaction and current trans-
action, we reflect on evaluation value received from current transaction.

By the α is the ratio of shared files, we use to give peers incentive. The
computation of α is as follows.

α = fnold

fnnew

Reliable P2P File Sharing Service 149

The computation of the Pj ’s trust value based on good and bad reputation
is as follows.

TPj = GRnew−|BRnew|
GRnew+|BRnew| ∗dnPj

The reputation value of file requester(Pi) is computed as follows.

GRnew = GRold ∗ α
BRnew = BRold + α

If the Pi sent the evaluation on the Pj , we decrease by α the good reputa-
tion of the Pi. If the Pi does not send the evaluation, we increase the bad
reputation of the Pi. Therefore, the trust value of the Pi decreases.

4 Analysis

In this paper, we can solve the “free riding” problem using trust value based
on reputation information. Also, we can restrict use of shared files against users
that provide malicious file including virus or worm, low quality file, or file whose
contents have no connection with title. Therefore, we can guarantee the reliability
of shared files and peers. We have performed experiment to show the effect of
the proposed scheme on change of trust value on peers. Simulation parameters
are as follows. a number of peers : 7, a number of shared files : 100, upload rate
(100%, 80%, 60%, 40%, 0%), initial reputation and trust value : 1. Fig. 2 depict
the change of trust value on peers through simulation.

Fig. 2. The change of trust value on peers

If peers upload the file and receive the good reputation continuously, their
trust value increase. On the other hand, if peers upload the file and receive
the bad reputation from many peers, their reputation value decrease gradually.

150 J.-H. Shin, W. Shin, and K.-H Rhee

Therefore, we can know that when peers provide the file and received the good
reputation,their reputation increase.

Our model manages the reputation and trust value of peer using the server.
Therefore, peer can not manipulate the reputation and trust value themselves
and can trust the reputation and trust value that is provided by the server. Also,
if a peer does not send the evaluation on the file provider after the transaction,
the server decreases the reputation value of the file requester.

5 Conclusion

In this paper, we diminished the impact of free riders and malicious users by
comparing the trust value of peers. In our model, if peers do not share files,
they can not obtain download authority for the shared files of other peers with
low trust value. Also, if peers share harmful files, they received a bad reputation
from file requester and restricted download authority. Therefore, we can improve
the reliability on shared files among peers and restrict the participation of free
rider and malicious user by referring to the trust value of peers.

Acknowledgement

This research was supported by the Program for the Training of Graduate Stu-
dents in Regional Innovation which was conducted by the Ministry of Commerce
Industry and Energy of the Korean Government.

This work was supported by grant No. R01-2006-000-10260-0 from the Basic
Research Program of the Korea Science and Engineering Foundation.

References

1. Selcuk, A.A., Uzun, E., Pariente, M.R.: A Reputation-Based Trust Management
System for P2P Networks. In: IEEE International Symposium on Cluster Computing
and the Grid, 2004, pp. 251–258 (2004)

2. Aslund, J.: Authentication in peer-to-peer system, Undergraduate thesis, Linkoping
University (2002)

3. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer-to-Peer Computing, HP TechReport HPL-2002-57 (2002)

4. Adar, E., Humberman, B.: Free Riding on Gnutella,TechRept:SSL-00-63,Xerox
PARC (2000)

5. Oram, A.: Peer-to-Peer:Harnessing the Power of Disruptive Technologies. O’Reilly,
Sebastopol (2002)

6. Golle, P., Leyton-Brown, K., Mironov, I., Lillibridge, M.: Incentives for sharing in
peer-to-peer networks. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM
2001. LNCS, vol. 2232, pp. 75–87. Springer, Heidelberg (2001)

7. Kazaa, http://www.kazaa.com
8. Kamvar, S.D., Schlosser, M., Garcia-Molian, H.: EigenRep:Reputation Management

in P2P Networks. In: Proceedings of the 12th International World Wide Web Con-
ference, pp. 123–134. ACM Press, New York (2003)

Studying Viable Free Markets in

Peer-to-Peer File Exchange Applications
without Altruistic Agents

David Cabanillas and Steven Willmott

Technical University of Catalonia,
Software department,

Campus Nord, Omega building
Jordi Girona Salgado, 1-3
Barcelona (08034), Spain

{dconrado,steve}@lsi.upc.edu

Abstract. File sharing networks are among the most popular applica-
tions of Peer-to-Peer (P2P) technology to date [1] and have been widely
studied in terms of performance, behavior, topology and other proper-
ties. A persistent theme throughout this research has been the evidence
that many P2P file sharing systems rely on the presence of altruistic
users, who provide files, network capacity or some other goods without
obvious personal gain and are potentially damaged by the presence of
too many free-riders (users who consume resources but do not provide
to others in return). In this paper we will explore the use of simple mar-
ket mechanisms for P2P file sharing which function without the need of
altruistic users and consider the conditions under which such markets
may be viable.

1 Introduction

Many P2P file sharing systems are known to rely heavily on the presence of
altruistic users which act as sources for content which benefits others but not
necessarily themselves [2]1. But experiences with P2P file sharing systems con-
firms that large resources owners are not always altruistic [4]. Economic mar-
ket based systems have been proposed widely (and in some trial systems also
adopted [5]), as a regulatory mechanism to provide incentives for users to pro-
vide content/resources to a system rather than relying on the altruism to others.
Systems such as Karma [6] and MojoNation2 are well known for introducing
“virtual currency” based markets in order to facilitate exchange. Systems based
on reputation [7], ranking [8], or other means have also been suggested.

1 In some P2P systems a non–negligible percentage of peers were proven to be altru-
istic. In Gnutella for example, 1% of peers served about 37 % of the total file shared
[3].

2 MojoNation has ceased operations, although information is still online:
web.archive.org/web/*/mojonation.net/*.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 151–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

152 D. Cabanillas and S. Willmott

The majority of the analysis of such systems [9], however have focus on free
riders – actors who take more than their fair share of the benefits or do not shoul-
der their fair share of the costs of their use of a resource – and how to eradicate
them. The danger for a system is that the presence of too many free-riders will
reduce or force to zero the number of altruists in the population – thus stopping
a system from functioning. In this context, an additional question arises: can a
market-based system for P2P file exchange function at all without the presence
of altruistic agents? and if so what are the conditions necessary for it to func-
tion? It seems intuitive that the answer to the first question should be yes since
digital content can arguably been seen as a good like any other. However, as is
argued in this paper, there are a number of pitfalls in implementing a function-
ing market system. In the work described, we study the conditions under which
a file exchange market mechanism based on a “virtual currency” such as those
tried in Karma and MojoNation can facilitate viable file-exchange. The paper
is organized as follows: Section 2 describes the environment, Section 3 charac-
terizes different types of markets, Section 4 are analysis experimental results for
different market configurations and finally Section 5 provides conclusions and
outlook. A longer version of this paper is available as [10].

2 Token Based Markets for P2P File Sharing
Environments

File–sharing applications provide the means for interchanges of content between
users. Specifically, users typically have in their possession a certain amount of
content but they would like to obtain other files they currently do not possess.
Other users, in turn may wish to access the content a user may have. In an
ideal world, a user would like to obtain all the content of interest to him/herself
without incurring any infrastructure costs (note that in certain systems costs
for content itself may apply - these are not considered here). Other members of
the community however have a similar aim and given that there are inevitably
some infrastructure costs incurred from providing content files to others, such as
bandwidth, continual connectivity etc. the question arises as how should these
costs be shared between participants?

Given the assumption that no agent in the world is willing to altruistically in-
cur costs simply in support of the community, as in human economic systems, a
balance therefore needs to be struck between a member of the community provid-
ing content and their ability to download access content. A powerful mechanism
to achieve this is the use of a concrete means of transferable value which can be
earned by providing content and spent by downloading it.

3 Types of Market Scenario

A market provides a mechanism to regulate exchange between members of a
community in which each member of the community wishes to maximize its

Studying Viable Free Markets in P2P File Exchange 153

utility [11]. A natural step is to create market places which use a type of artificial
currency in order to simulate transferable value between users in a system – and
hence facilitate exchange. As is shown in this section however, there are pitfalls
to doing this. In particular the types of markets envisaged include: Time limited
markets, content limited markets, and time and content unlimited markets. The
model for file interchange, described in [10], has three main elements: are content
distribution, monetary system, and agent behavior. The most relevant aspects
to look on as is that the model are:

– The model is composed by two markets. The inner market model used to
study the application and the outer market model which models a real world
currency.

– Agents select their strategies (offer/download content) depending on the
quantity of tokens that they have/do not have via a set of thresholds.

3.1 Time Limited Markets

In this case, the number of interactions in a given market place is limited (time
limited). Concretely, this means that in a time the system will cease functioning
(for example if all files are exchanged, a certain deadline passes or after some
signal is given). In a time unlimited market, members cooperate with the ob-
jective of getting a benefit in a long term future.3 However, when the time is
limited, the hope of a future benefit is not apparent because members know that
in a concrete time the game will finish.

To understand the effect of this fact given that players know that a game has
exactly n rounds. Then, no matter which round has been reached (say n − 1)
the agent is aware that the currency used in the inner market will no longer be
useful after the end of the game. Hence no agent will offer content in the last
round (round n). Subsequently this also means that the currency is no use not
only after the end of the game but also not in the last round. Similarly no agent
will offer content in round n-1 and so forth. By repeating this argument many
times, rational agents would deduce that they should not offer content at all. In a
simulation where an agent can chose between two strategies, the only difference
between the two strategies (s1,s2) and (s′1,s2) is that in the period t the first
strategy chooses C (cooperate – offer content) and the second strategy chooses
D (defect – not offer content). Until the end T of all iterations the benefits of
choosing the strategy (s′1,s2) will be greater than (s1,s2). This concept is clearly
analogous in the well known game theory known as the Prisoner’s Dilemma (PD)
[12] result for games of known duration.4 The conflict between the individual
and collective interests is expressed in this game, which has implications in real
life in areas like the policy, society, economy. Concretely the relation is with a
subset of PD, named PD with finite repetitions.

3 The shadow of the future [12].
4 PD rules are explained in detail in [13].

154 D. Cabanillas and S. Willmott

3.2 Content Limited Markets

This hypothesis considers that the content is limited even if time were unlimited.
In such world the number of total different content items is finite and unchanging.
In an ideal world all members in the market should obtain all content items that
they want. If agents are aware of this fact, this goal will not be achieved. When
an agent obtains all the content that it desires (satisfied agent) it is conscious
of the fact that it has all it may want so a rational agent would cease offering
content. The reason is similar to that in the previous case: the agent will, in the
future, not derive benefit from the inner–market tokens (IMT) obtained. This
fact entails that other non-satisfied agents may not obtain all the content they
desire if some of it is held by satisfied agents. The tokens have value for an agent
if they can be exchanged for something desirable. Once it is known that there
is no more new content to obtain, the value of tokens tends to zero. In turn,
this causes the agent to become resistant to offering content before all possible
useful exchange have been made. Only altruists would continue once they had
obtained everything they needed.

3.3 Time and Content Unlimited Markets

In the previous section it was argued analytically that markets limited in time
or/and content function sub–optimally, if at all. In this section, we move on to
the case of behavior of the market without these limitations. With respect to the
cost of offering a piece of content versus the satisfaction that someone can obtain
from obtaining outer–market tokens (OMT), we have the following alternatives:

A. If the cost of offering is less than the benefit obtained: In this case, agents
have interest in offering their contents because they can obtain benefit of it
in return – a benefit that in the future the agent can re–invest.

B. If the cost of offering is equal to the benefit obtained: In this case, no net
benefit is generated through offering content on average.

C. If the cost of offering is greater than the benefit obtained: In this case file
exchange generates a net loss for the community over time and most likely
for the individual – increasing with the number of transactions carried out.

For the three options above it is probable that A and B could function in
some form (although option B only in a very limited manner), while option C
appears to be unsustainable in the long run since agents in the system will all
incrementally loose satisfaction.

4 Experimental Evaluation

In this section we describe a number of simulations which help to clarify the
nature of the dynamics of a token–based P2P market under the scenarios listed
in the previous section – Time and content unlimited markets.

Studying Viable Free Markets in P2P File Exchange 155

Table 1. Initial experiment parameters

Symbol Meaning Value

A n of agents 200

F n of files 200

C n of categories 5

CxA n of categories x agents 2

Cimtfx Cost per file (IMT) 500

Bimtfx Benefit per file (IMT) 500

Comtfx Cost per file (OMT) Minimum Bomtfx

Bomtfx Benefit per file (OMT) Greater than Comtfx

Agents in the system5 do not act altruistically6 and this is concretely inter-
preted as a fixed rule: agents only offer content to generate IMT up to a set limit
(threshold) which is the level the agent expects to be able to usefully spend on
new content. Further, since an agent cannot buy content if it has less IMT. By
means of these thresholds, the period where agents offer content is constrained
by need. When an agent has more tokens than supply threshold, none of its con-
tent will be offered, although the agent wishes to purchase some content from
the market. If an agent has less tokens than the demand threshold and wishes
to purchase content in the market, it will automatically begin to offer content.

4.1 Experimental Results

In this section we analyze the results of experiments simulating options 2 and 4
above. Different cases considered for option 2 are:

Simulation 1: At this case agents have a quantity of 2900 IMT, near to thres-
hold related with the supply.

Simulation 2: At this case 2000 IMT per agent.
Simulation 3: At this case 600 IMT per agent, near to the demand threshold

related with the demand.

In option 4, three cases are considered:

Simulation 4: Half of the members 600 IMT and the other half 2000 IMT.
Simulation 5: Half of the members 200 IMT and the other half 2000 IMT.
Simulation 6: Half of the members 200 IMT and the other half 6000 IMT.

Figures 1 a) and 1 b) show the cumulative density function of the different sce-
narios proposed above, in terms of quantity of files exchanged in the system and
times that agents did not have enough tokens to buy contents when they would
5 Table 1 describes the system settings.
6 However when the system starts to work in the initial state some agents are randomly

selected and forced to offer their contents. Without this jump start, no agents would
offer content initially.

156 D. Cabanillas and S. Willmott

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000 16000

O

F
S

O
LD

 F
IL

E
S

STEPS

Maximum # sold files

Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation 5
Simulation 6

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000

TI

M
E

S
 T

H
A

T
A

N
 A

G
E

N
T

H
A

S
 N

O
T

E
N

O
U

G
H

 T
O

K
E

N
S

 T
O

 B
U

Y

STEPS

Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation 5
Simulation 6

a

Fig. 1. a) Experiment showing the number of sold files x simulation b) Experiment
showing the number of times that agents in the system did not have enough tokens

have liked to (indicating inefficiency of the market as an exchange mechanism)
respectively. The first figure shows the relationship between quantity of tokens
and number of files on sale. The second figure relates the threshold and quan-
tity of times an agent in the system does not have enough IMT to buy content.
Both figures show the importance of the amount of tokens that the agents in the
system runs.

4.2 Evaluation Results and Discussion

The simulations show the following results:

– The first observation is that at the beginning all simulations show a signifi-
cant increase of activity due to different facts: initially, agents have enough
money to buy at least one file; also we may think about many agents having
an interest in the content offered by the rest of members.

– Simulations 1, 2 and 3 reveal that the quantity of tokens in the system mod-
ifies the behavior of the market, in terms of global number of files exchanged
(at satisfaction level). Reviewing values shown in figures 1 a) and 1 b), in
a first glance it is shown that in simulations 2, 6 and specially 3, in many
cases agents want to buy content but they do not have enough tokens to
buy anything, showing that it is not a optimum market. Reviewing in detail
different steps in the simulation 3, it can be seen that the distribution of
tokens is not appropriate to the right working of the system: Some agents
pass boundary of supply, so they can’t offer anything; and other agents do
not have enough tokens to buy content. This creates a deadlock in which
potential sellers of this desired content in turn cannot obtain funds to buy
the content they desire – a clear liquidity problem.

– Simulation 4 shows that selfish agents can actually prevent the system from
working correctly. This occurs because; if an agent have more tokens than
threshold supply they will not offer their content. And, in this case, the
remaining agents have a number of tokens near to the threshold supply.
Hence once a few files have been purchased, they also pass this quantity and

Studying Viable Free Markets in P2P File Exchange 157

cease offering files. This confirms the stability of market fails in the case of
token oversupply.

– In simulation 5, agents that have fewer tokens than the purchasing threshold
can trade to move above the threshold. Limited trade becomes stable in token
undersupply situations.

– In simulation 6, agents that have more tokens than the threshold supply
can trade with agents that have fewer tokens. A transferring of tokens is
generated from agents that have tokens to agents who do not have tokens.

Throughout this paper we have discussed which market conditions which
are/are not viable for P2P file sharing systems. While the restrictions discussed
in this paper do not apply to all P2P systems they may certainly arise in systems.
Examples could include: 1) limited content a system of interchange of contents
could exist specialized. In particular file categories, 2) limited time markets in
special short–term corporate promotions (where tokens loose validity after a cer-
tain date) or 3) in time/content unlimited scenarios where the balance between
cost and benefit is very narrow. The analysis and experiments show that:

– Markets finite in time or content are likely to fail (either because agents can
reason about the eventual collapse of the token currency, or because content
is withdraw from sharing to early once some agents gather all the files they
are interested in).

– That even in markets with infinite time and content, where token based
economies can function, barriers still exist to fluid interchange even if the
cost/benefit of trading files is above zero.

– Money supply issues in infinite time and content markets play a large role
in success/failure (as implicitly does new content supply). This mirrors real
world inflation/deflation/money supply issues in a simple way which is un-
surprising. However, in such limited environments, effects are more dramatic
and further the existence of upper and lower bounds suggest that optimal
values may exist which would need to change over time with the amount of
users and content.

The first result suggests that artificial currencies would not be a good so-
lution for time/content limited scenarios and in these cases, despite the added
cost/complexity, real currency approaches may need to be used. The second two
statements suggests that even in cases where virtual currency approaches could
be applied, careful management of the currency in question needs to be car-
ried out – most likely regulating the money supply over time to ensure efficient
functioning.

5 Conclusion and Outlook

The results presented here provide a rough classification of types of token-based
markets. In order to understand these phenomena in detail however, more work
is needed in particular to: establish the range of conditions under which such a

158 D. Cabanillas and S. Willmott

phenomena arise, analyze the detailed dynamics of those cases under which the
system works. The overall aim of further work would be to explore money supply
and market policy issues in order to manage the economy of the inner market to
keep it in the identified functional zone. Each of the model changes considered
above would likely change the visible market dynamics but the underlying results
of a relatively narrow set of market conditions being viable seems likely to be
stable.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36, 335–371 (2004)

2. Ntarmos, N., Triantafillou, P.: Aesop: Altruism-endowed self-organizing peers. In:
Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS,
vol. 3367, pp. 151–165. Springer, Heidelberg (2005)

3. Adar, E., Huberman, B.A.: Free riding on gnutella. First Monday 5 (2000)
4. Ranganathan, K., Ripeanu, M., Sarin, K.R., Foster, A.,, I.: Incentive mechanisms

for large collaborative resource sharing. In: Proc. of the 4th IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid 2004), Chicago,
USA (2004) (accepted)

5. Antoniadis, P., Courcoubetis, C.: Market models for p2p content distribution. In:
Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS (LNAI), vol. 2530, pp. 138–
143. Springer, Heidelberg (2003)

6. Garcia, F.D., Hoepman, J.H.: Off-line karma: A decentralized currency for peer-
to-peer and grid applications. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.)
ACNS 2005. LNCS, vol. 3531, pp. 364–377. Springer, Heidelberg (2005)

7. Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In:
Peer-to-Peer Computing, p. 150. IEEE Computer Society, Los Alamitos (2003)

8. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: WWW 2003: Proceedings of the 12th
international conference on World Wide Web, pp. 640–651. ACM Press, New York
(2003)

9. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: Incentives for combatting
freeriding on p2p networks. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.)
Euro-Par 2003. LNCS, vol. 2790, pp. 1273–1279. Springer, Heidelberg (2003)

10. Cabanillas, D., Willmott, S.: Studying viable free markets in peer–to–peer file ex-
change applications without altruistic agents. Technical Report LSI-06-12-R, De-
partment of Computer Science, University of Catalonia (2006)

11. Ranganathan, K., Ripeanu, M., Sarin, A., Foster, I.: To share or not to share an
analysis of incentives to contribute in file sharing environments. In: Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, USA (2003)

12. Axelrod, R.M.: The Evolution of Cooperation. Basic Books (1984)
13. Poundstone, W.: Prisoner’s Dilemma. Doubleday, New York (1993) (Based On

Work By-John Von Neumann)

Distributed Multi-layered Network Management

for NEC Using Multi-Agent Systems

Richard Vaughan, James Wise, Paul Huey, Michael Alcock,
Jonathan Vaughan, Steven Shingler, and Graham Atkins

General Dynamics United Kingdom Ltd.
Bryn Brithdir, Oakdale Business Park, Blackwood, Wales, NP12 4AA

richard.vaughan@generaldynamics.uk.com

Abstract. Within the military environment it is important that effec-
tive communication lines are maintained so that critical messages are
able to reach their destinations and remain secure. Currently the bulk of
the communications infrastructure is preplanned prior to mission start,
and requires manual intervention when reality fails to match the plan.
The communication systems need to be highly flexible, and adaptable in
the face of (unforeseen) hostile and adverse conditions.

We believe that this is where a combination of a distributed agent-
based system and a reconfigurable peer-to-peer overlay network can be
used help to provide a communication system that is robust and highly
adaptable in the face of ever changing and adverse conditions with a
minimal amount of planning and enable us to reduce the burden placed
on dedicated staff in the field.

1 Introduction

During a military mission, the communications network must be structured to
support the commander’s intent for the mission in all circumstances, which may
change several times as the situation unfolds. The combination of constraints
(including very low bandwidth channels, high mobility, zero (or minimal) in-
frastructure and a very adverse environment) and success criteria 1 make this a
particularly challenging application domain.

The management of such a network within a dynamic and hostile environment
presents a number of problems to which there is no static or single point solution.
No control system can accurately and instantly discover the global state of a
network, deduce the ideal global state, and enact a change to the ideal state.

We propose to augment the existing planning and management approach by
implementing a distributed multi-agent system (MAS) capable of making del-
egated decisions about the communications infrastructure on behalf of users2

which will run on the devices in the network.
Section 2 of this paper describes the current approach to management of such

a network, section 3 describes our approach to the problem, section 4 describes
1 i.e. Completion of the mission, irrespective of network performance.
2 or peer services.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 159–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

160 R. Vaughan et al.

the experimentation environment we have constructed with which to explore the
problem space, section 5 defines the military case study within whose boundaries
we conduct our experiments, section 6 presents our results and in section 7 we
present our conclusions.

2 Management of Existing UK Military Radio Networks

As we discuss in [1], the management of the existing UK military radio networks
is a manually intensive, off-line process requiring expert input from signalling
staff. The main issues with this management approach are that:

– Configuration is created off-line prior to mission start. Flaws in the
configuration can lead to invalid communication plans when applied to the
devices on the network. These flaws are corrected off-line and the updated
plans manually reapplied to the devices.

– The management applications are separated from the targets of
control. There is a risk that a flaw or network problem that prevents auto-
matic update can can lead to isolated ’islands’ which are outside automatic
control.

– Unforeseen changes. As the situation unfolds on the battlefield an entity
might find itself in a position that was not planned to be in. This might mean
that it is unable to communicate with other nearby entities as they do not
have the correct frequency allocation or cryptographic keys to enable com-
munication. The solution for this requires an element of off-line re-planning
and manual re-application of the plans to the devices in the network. How-
ever, it may not be possible to get the updated configuration out to the
entities in time due to the fluid nature of the battlefield.

3 Our Approach

We propose to augment this planning and management approach by creating
a distributed multi-agent system capable of making delegated decisions in a
dynamic environment running on the devices in the network rather than simple
augmentation of existing logic with agents. The system is capable of determining
the appropriate configurations for itself as the system is running, and has the
ability to enact the configurations accordingly based on high level plans fed into
the system at run-time.

By adding intelligent agents into the system we are able reduce the detail
required for the planning stage since the agents will be responsible for the man-
agement and implementation of the plan. For example, this means that instead
of having to specify which individuals can communicate, the plan can be defined
at a higher level so as to identify only the groups or roles that must commu-
nicate. Users will be assigned to one or more groups and roles at mission start
and identified to the system through their data terminals. The agents are able
to fuse this information together at run-time to produce the highly detailed plan

Distributed Multi-layered Network Management for NEC 161

and configurations necessary to manage the communications network. This ap-
proach offers a great deal of flexibility since it means a user can be removed from
one group or role and assigned another while the system is running. The agent
system will detect this and be able to reconfigure the communications system
accordingly as the (dynamic) policies of the system dictate.

Agents[12], or agent-based systems, are not a panacea but we believe they
can provide a more appropriate mapping between the control system and the
system being controlled, and allow us to automate many of the resulting control
mechanisms. They can also accept delegation of those decision-making and col-
laborative functions that are more suited to machines than people, easing the
burden on operators and providing a management system that can operate in
an autonomic[7] manner given appropriate high-level direction[1].

The agent-based system is shielded from the complexities of the underlying
system(s) through a layered service architecture capable of presenting informa-
tion fused from disperate sources and is able to enact the resulting decisions (de-
scribed further in [1]). The following layers have been identified (see Figure 1):

– An external-facing layer, that will enable external applications to interact
with the system as a whole.

– The agent layer itself.
– A P2P layer, which allows the agents to form an overlay network atop the

underlying networking and facilitates inter-agent messaging
– A network access layer that allows the agents to influence and retrieve infor-

mation from the networking sub-system or network management system(s).
– An OS abstraction layer that allows the agent system to interact with the

underlying operating system.

We acknowledge that even this MAS will not be able to see the entire network
at any moment in time, but, by having the agents know about changes and
influences within their local zone3, we ’believe the agents will be able to make
informed decisions more rapidly and efficiently than an equivalent centralised
system that can only see traffic passing through, or logged to, its local node.

The agents are governed in their decisions and actions by policies. These
policies are updated dynamically as the system runs, as well as being defined
up-front during the planning stage(s). Policies will be set by the commanders to
inform the agents how their section of the network should be managed to best
meet their intent. These policies may be further refined by the agents to direct
network or system components under their control or influence as needed.

3.1 System Policies

Policy is defined in the dictionary as: ”A plan or course of action, as of a govern-
ment, political party, or business, intended to influence and determine decisions,
actions, and other matters”[18]. We have refined this definition to ”an expression
of rules intended to govern the behaviour of the system”.
3 For example, peers within 2 network hops.

162 R. Vaughan et al.

Fig. 1. Application Layers

Having researched recent papers on policy (e.g. [9], [13]), and having looked at
some of the available toolkits, we have found no single policy model that embraces
all of our requirements and no currently available implementation deals with the
adaptive and dynamic nature of our environment appropriately and effectively.
This means that we need to extend existing work to create a policy engine and
associated verification mechanisms that can operate in our mobile, decentralised
environment. Therefore it would appear that the approaches taken by either (or
both) Imperial College on the Ponder[10] toolkit, and the work currently under-
way at DeMontford University on SANTA[11] could be a good base, since, both
of these allow for an expression of both management and security policies.

4 Experiment Case Study

Our research has been conducted within the context of the military case study
shown in Figure 3: An agile military mission group is moving through an envi-
ronment where other networks (military or otherwise) are present. The terrain

Distributed Multi-layered Network Management for NEC 163

Reserve

HQ

Agile
Group

Destination
Area of

Operation

Deployed
Battlegroup

BORDER

HQDeployed
Battlegroup

HQHQ

HQ
Deployed

Battlegroup

HQDeployed
Battlegroup

Hostile
Forces

Fig. 2. Basic Mission Scenario

through which the group is travelling contains various features that can block
(or disrupt) radio transmissions. The radio network must be managed such that:

1. It is always possible to communicate back to HQ (directly or indirectly).
2. The available radio network is used in the most effective manner.
3. Minor problems with the radio network are detected, analysed, and, fixed.
4. If a fix for the problem is beyond the system’s capability, a human is informed

to guide corrective action.
5. Most importantly, the current commander’s intent for the mission must be

supported effectively at all times.

5 Results

Our initial research has led us to implement an initial release of the framework
for conducting these experiments and prototypes of the agents and P2P services
required by our architecture[1].

We have agents that are capable of detecting simple kinds of interference on
the radio network, and of making a decision as to whether the system should
change radio channel given the changing nature of the user requirements and
environmental conditions. This channel change is propagated across all vehicles
considered to be on the local vehicle network.

The agents in the agile group (through the P2P layer) are able to maintain
communications with peer agents within the headquarters network. The P2P
layer is responsible for the actual maintenance of the network routes and data
pipes, but the agents monitor and direct the P2P layer accordingly.

Figure 5 shows how this basic control flow occurs in the system.

1. An application requests access to some resource on another network or ve-
hicle.

2. The local agent talks to the remote agent (via a local P2P service) and
requests the service.

164 R. Vaughan et al.

Network

App

Agent

P2P

Agent

P2P
P2P Net

Policy

Network 1

Network 2

1

2

3

4

5

6

7

89

10

Fig. 3. Basic control flow in the network

3. The remote agent checks the request against his current policies to see if it
is allowed.

4. The policies indicate that it is allowed.
5. The remote agent creates a new policy for his P2P service to allow the P2P

layer to set the service up.
6. The remote agent informs his local P2P layer about the new policy.
7. The remote agent communicates the access to the local agent.
8. The local agent instructs the local P2P service to setup the user service.
9. The local P2P layer notifies the agent when the user service is ready.

10. The local agent notifies the application that the user service is ready and he
can start using it.

The design of our test environment constrains our inter-agent chatter to only
that which is necessary, and forces them to use a specific managed pipe (across
the P2P overlay network) when it wants to communicate to an agent outside
of it’s local node rather than allowing the agent-framework to dictate what
messages are sent, when, and how. This is important in military networks as the
mobile sections are unlikely to have bandwidth to waste, and we do not want an
agent to update all of it’s peers to the detriment of the networks intended use.

6 Conclusions

We believe that we have defined an authentic case study in which agents can
provide a benefit as part of a system level solution. This is important for the
agent community, as, without authentic, customer focused, case studies based
on domain specific problems, we cannot prove whether solutions incorporating
agents or agent-based systems will offer an advantage over those that do not[19].

Along the way we have discovered just how complex distributed multi-agent
systems are to implement. Since we have chosen to implement a complete end-
to-end system (rather than a section or component of a system) we have had
to deal with the complexities of the many interactions between the components

Distributed Multi-layered Network Management for NEC 165

that comprise the system and which all need to be defined, implemented, tested,
and debugged.

Whilst, at this time we cannot say with any certainty that we have identified
a ’killer app’ for agents, we believe that military radio network control systems
provide challenges that agent systems are well placed to solve. The flexibility
for which deployment of a MAS provides persuasive solutions that are likely to
contribute effectively to system level objectives without requiring a mass increase
in the workload or expertise of the ordinary users of the communications systems.

The flexibility and complexity of the communications system will increase as
new radio technologies promote an expectation of ubiquitous, always-on con-
nectivity and provide a greater variety of connection types and capabilities at
each communication node. This particularly applies with reconfigurable software
radios ([22], [23]) and the consequent opportunity for selective use of adaptive
protocols and policies. At this stage, direct control of radio parameters becomes
infeasible, in the same way that pilots of fast jets no longer stabilise the airframe
manually when flying.

Our results have shown that agents are well suited to accepting delegation
of routine and remedial management tasks currently carried out by signalling
staff and are able cooperate to ensure system level changes are monitored and
controlled effectively and consistently in a decentralised environment.

Our results also show that the overhead incurred from the distributed solution
does not overwhelm or cause the network to be ineffective in normal use. For
now this is a binary test of message arrival. We are designing more experiments
that will produce more accurate metrics regarding the overheads concerned in
benign and emergency use cases. We will present these findings in a later paper.

We are confident that the proposed agent-based approach will enable us to
build systems which are more adaptable in the face of change, and that this kind
of system provides a sustainable upgrade route, since the agents, and the service
layers can be replaced (or augmented) without breaking the overall system 4.

Acknowledgements

This work is supported by the UK MOD Data and Information Fusion Defense
Technology Centre.

References

1. Distributed Decision-making and Control for Agile Military Radio Networks In:
DAMAS 2005 (2005)

2. Project: Bowman, http://www.mod.uk/dpa/projects/bowman.htm
3. Single Channel Ground and Airborne Radio System (SINCGARS),

http://www.fas.org/man/dod-101/sys/land/sincgars.htm
4. Clansman, http://www.army.mod.uk/equipment/cs/cs cln.htm

4 As long as appropriate design guidelines are implemented and adhered to!

http://www.mod.uk/dpa/projects/bowman.htm
http://www.fas.org/man/dod-101/sys/land/sincgars.htm
http://www.army.mod.uk/equipment/cs/cs_cln.htm

166 R. Vaughan et al.

5. The FreeBSD Project, http://www.freebsd.org
6. IMUNES, An Integrated Multiprotocol Network Emulator/Simulator,

http://www.tel.fer.he/imunes/
7. Autonomic Computing, http://www.research.ibm.com/autonomic/
8. Network Coding, http://www.networkcoding.info
9. An Artificial Intelligence Perspective on Autonomic Computing Policies,

http://www.research.ibm.com/people/w/wwalsh1/Papers/policy04-acp.pdf
10. Ponder: A Policy Language for Distributed Systems Management,

http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml
11. Janicke, H., Siewe, F., Jones, K., Cau, A., Zedan, H.: Analysis and Run-time Ver-

ification of Dynamic Security Policies. In: Thompson, S.G., Ghanea-Hercock, R.
(eds.) DAMAS 2005. LNCS (LNAI), vol. 3890, pp. 92–103. Springer, Heidelberg
(2006)

12. Software Agents: An Overview,
http://www.sce.carleton.ca/netmanage/docs/AgentsOverview/ao.html

13. Integrating goal specification in policy-based management. In: 2nd International
Workshop on Policies for Distributed Systems and Networks (2001)

14. Network Enabled Capability (NEC) - Joint Services Publication (JSP 777),
http://www.mod.uk/issues/nec

15. Schumacher, M.: Objective Coordination in Multi-Agent System Engineering.
LNCS (LNAI), vol. 2039. Springer, Heidelberg (2001)

16. Vaughan, R.: Agent Based Routing (not yet published)
17. Multilateral Interoperability Programme (MIP), http://www.mip-site.org
18. Definition of policy, http://dictionary.reference.com/search?q=policy
19. Wagner, Gasser, Luck: Impact for Agents. In: AAMAS (2005)
20. Probability Theory: The Logic Of Science E. T. Jaynes (ISBN 0521592712)
21. Reinforcement Learning Repository, http://www-anw.cs.umass.edu/rlr/
22. Joint Tactical Radio System, http://jtrs.army.mil
23. Next Generation Communications (XG),

http://www.darpa.mil/ato/programs/XG/

http://www.freebsd.org
http://www.tel.fer.he/imunes/
http://www.research.ibm.com/autonomic/
http://www.networkcoding.info
http://www.research.ibm.com/people/w/wwalsh1/Papers/policy04-acp.pdf
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml
http://www.sce.carleton.ca/netmanage/docs/AgentsOverview/ao.html
http://www.mod.uk/issues/nec
http://www.mip-site.org
http://dictionary.reference.com/search?q=policy
http://www-anw.cs.umass.edu/rlr/
http://jtrs.army.mil
http://www.darpa.mil/ato/programs/XG/

Facilitating Collaboration in a Distributed

Software Development Environment Using P2P
Architecture

Maryam Purvis, Martin Purvis, and Bastin Tony Roy Savarimuthu

Department of Information Science, University of Otago
P O Box 56, Dunedin, New Zealand

{tehrany,mpurvis,tonyr}@infoscience.otago.ac.nz

Abstract. This paper describes efforts to facilitate collaborative work
in a distributed environment by providing infrastructure that facilitates
the understanding of inter-connected processes involved and how they
interact. In this work we describe how our agent-based framework sup-
ports these. This distributed work environment makes use of both P2P
and client-server architectures. Using an example of developing an open
source software system, we explain how a collaborative work environ-
ment can be achieved. In particular, we address how the support for
coordination, collaboration and communication are provided using our
framework.

1 Introduction

Distributed software teams are becoming more common in today’s software
projects, because the teams are based on skill pools that are available in the
global community rather than being constrained with local resources. Distributed
software development [1,2] involves collaboration of people from distributed ge-
ographical locations. This presents challenges in day-today activities in areas,
such as co-ordination, collaboration and communication [2,3]. Co-ordination and
collaboration can be facilitated by the provision of flexible communication mech-
anisms. In the context of collaborative work, an important factor that impacts
the success of the final outcome is how effectively any issues associated with the
shared objective are communicated and resolved. Such communication can be
direct, such as face-to-face interactions, telephone conversations, interactions by
means of chat tools, email, etc; or they can be indirect through common artifacts
associated with the final outcome. In the context of developing an open source
software system, the artifacts associated with the final product comprise doc-
uments, process models, source code etc. A mechanism is needed that ensures
these constantly evolving artifacts are easily accessible to the collaborating part-
ners. So there is a need for a system that provides infrastructural support for
the smooth functioning of a collaborative work environment.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 167–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

We will assume that in a context of an open source software development,
a distributed team working on a particular project is composed of a few sub-
systems. For example in the development of an operating system, the sub-systems
can be developing the kernel, I/O and file system, mail system, networking, a
set of tools etc. A number of interested people work towards the development of
each sub-system. In this environment the following elements can be useful:

– A model that represents the functional and behavioral aspects of the project
– A model that represents the sub-system level activities
– A model of the communication protocol (Interaction Protocol) between var-

ious collaborators

In this paper we describe how these capabilities are incorporated into the
collaborative work environment. Using various scenarios we also explain how
these features are utilized. To achieve a collaborative work environment and
provide communication mechanism between interacting collaborators we use the
agent based system OPAL [4]. Using this system we can model each collaborator
as a software agent. The Coloured Petri Net [5] formalism is used to model the
activities of the collaborators as well as the communication protocols. These
models are presented in more detail in Section 3.2.

2 Background

To develop the infrastructure needed for collaborative work environments we
have used Coloured Petri nets to represent process models and software agents
as the building block for providing P2P support. We use Coloured Petri nets
(CPN) as a formalism to model workflows in our system. The mathematical
foundation behind the Coloured Petri nets makes it a useful tool for modeling
distributed systems. A detailed description of CPNs can be found in [5].

We have used software agents to build our system. Some of the commonly
accepted characteristics of an ”agent” (listed by Bradshaw [6]) are reactivity,
collaborative behaviour, communication ability, adaptivity and mobility. An im-
portant benefit is that multiagent systems facilitate distributed and open archi-
tecture. Such a system can be adaptable and is robust under conditions of local
failures and changing environmental conditions.

The next section describes an open source software development scenario and
explains how the P2P architecture is used.

3 Collaborative Work in Open Source Software
Development

3.1 An Overview of Collaborative Work

In this section we describe the collaborative work associated with an open source
software development environment. Figure 1 shows how several collaborators re-
siding in one location (e.g Dunedin), can communicate with other collaborators

Agents and P2P Computing 169

in another location (e.g Wellington). Collaborators A, B, C, and D may be in-
volved in the development of one sub-system (such as a kernel sub-system), while
collaborators B and E are working on another sub-system (such as a networking
sub-system). For each of these sub-systems there exists a server to which the
sub-system members may commit their internally developed local artifacts. The
sub-system servers periodically update their stable releases to the project server.

Fig. 1. An agent based collaborative software development environment

There are both inter-group and intra-group communications in the collabora-
tive work environment. However, the inter-group communications may be more
frequent, due to a possibly higher level of dependencies between the various
components involved. Due to frequent changes in modules during development
and the need to integrate the related modules, it is possible that members of a
group will access a particular module even when it is not quite suitable for final
release. For example, one member may want to obtain the API of a module,
or the supporting document such as the specification, associated test cases and
so on. In these circumstances the members can obtain a pre-release module for
preliminary testing from the module developer directly using P2P communica-
tion. The members can thus publish pre-release modules that can be accessed
by another module for integration and testing purpose. If there are any conflicts

170 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

in terms of the expected interface and the current interface, it can be sent as a
comment or feedback to the developer of that particular module.

On comparing with the work done by other researchers [1,2,3], our approach
provides a formal and uniform way of communication mechanism between the
peers by using Interaction Protocols. In addition, the collaborative agent has a
built-in knowledge of the system interfaces and dependencies. This knowledge
can be used in informing the collaborators to take certain actions when required
in the context of software development (explained in scenario 5).

The functionalities provided by each agent are indicated inside the callout
box at the top of Figure 1. The agents can perform various software engineering
activities such as displaying process models, showing API and source code, down-
loading source code and test cases. The agents can then provide notifications on
updates and feedback on the artifacts developed.

3.2 Scenario Description

In the following scenarios we demonstrate how coordination is achieved by inter-
connecting the overall process models with the sub-system process model in
scenario 1. Similarly in scenario 2, we describe how agent interaction protocol
and the model associated with each of the transitions are linked.

Group collaboration is described in scenarios 3, 4 and 5 where the participat-
ing agents can make the project artifacts available to each other and make certain
requests. Coordination and collaboration are realized through agent-based peer
to peer mechanism provided by our agent-based framework.

Scenario 1: Sharing a common understanding of the overall process
model of the project. All collaborative partners should share a common
understanding of the project that they are working on. To facilitate this common
understanding we use Coloured Petri nets to represent the overall structure and
behaviour of the project. The project moderator develops the process model
(through discussion with related resources).

The project manager sends an XML-based process model via agent based
communication modes to all the participants. The participant agents can then
display the process model. The collaborators can modify the process models and
send the result to the moderator agent. The moderator agent collates various
process models and sends the models again to all the participants for choosing
the suitable process model (perhaps by consensus).

For example the model shown in Figure 2 describes the overall project struc-
ture and the dependencies between various components. This model shows that
the project is partitioned into three sub-systems, s1, s2 and s3. It can be ob-
served that s1 and s2 can be performed concurrently. The diagram also shows
that s3 depends on s1 and s2. Each sub-system in turn is represented using a
CPN model which results in a hierarchy of process models that describe the
overall model of the system.

Scenario 2: The process associated with the communication between
agents. The generic process model describing how agents communicate with

Agents and P2P Computing 171

Fig. 2. Model associated with message handling (communication) in each agent

each other is given in Figure 3. Note that the interaction between collaborat-
ing members of the software development team are represented in the model
by interactions between software agents, representing those team members. Each
model can be executed by a collaborator agent [7] which makes use of
JFern [8], a Petri net engine. The collaborator agent performs the following
operations:

– Receive and parse the requests coming from other collaborator agents
– Send results to other collaborator agents

There exists a message dispatcher in the agent based framework that dis-
patches messages that reach the ”out” node shown in Figure 3. All messages
coming to a particular agent will be accumulated in the ”in” node of that agent
and out-going message will be placed in the ”out” node of that agent [9].

When an agent recognizes a message in its ”in” node, it evaluates which tran-
sition should be invoked based on information received. Each of these top-level
transitions may be considered as an abstraction for a more detailed sub-model
Petri net that represents a refinement of the top-level abstraction. For example
the processRequest transition expands to a sub-model where the decision regard-
ing which type of request is handled (such as show API or download source code
activity) can be invoked. Once the activity is performed, the control is returned
to the parent process model’s transition.

Scenario 3: Group configuration. In our agent based framework, for each
project, a moderator agent is created. Our framework uses OPAL’s JXTA imple-
mentation [10] to facilitate peer to peer communication which allows for agent
discovery, joining and leaving. Collaborator agents can join a given project by
searching the projects listed in the directory service of the system. In doing
so, the collaborator agents interact with the moderator (such as finding details
about the overall process model). Similarly, a sub-system can be formed when
one of the collaborator agents itself, chooses to become a moderator. The newly
joining agents can then decide to join this specific group to implement a partic-
ular sub-system. It is also possible that one collaborator agent can be a part of
two sub-systems.

172 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

Fig. 3. Model associated with message handling (communication) in each agent

When changes are made to the artifacts produced by each sub-system, its
members are notified. Also, the changes will be published to other sub-system
members that have subscribed to receive these changes.

Scenario 4: Making artifacts available to the collaborators. Develop-
ment team members working on each sub-system can publish their requirement
specifications, API’s, source code, test cases, test results etc. using a Web Ser-
vice. The collaborator agents are notified of any changes made to these services.
When need arises an agent can connect to a Web Service and retrieve required
information. For example agent A, who is interested in updates from agent B
and C, receives the notification of updates from B and C. When needed, agent
A can make use of that information.

Scenario 5: Details associated with accomplishing different types of
requests. Recall that Figure 1 shows that each collaborator agent can perform
various services such as display process model, show API, download source code,
run test cases etc. Here we describe how a collaborator agent can run test cases in
a distributed environment. Assume that there are three agents belonging to three
different sub-groups. Assume that agent A has to test the modules developed
by B and C (as A’s module interfaces both B and C). Agent A has the basic
knowledge of their dependencies and can only test when both B and C have
notified that their code is ready to be tested. When both the notifications are
received, Agent A requests and receives the API documentation from both B
and C. Agent A tests the modules developed by B and C which are exposed as
Web Services and sends the results (bug report) to B and C. B and C can resolve
the issues raised by A. Here we are assuming that B and C have not made any
changes to their interfaces. If B has changed the interface for the module that is
being developed, then A should modify the test cases and B should incorporate
the changes in the Web Service that is exposed for A to test.

Agents and P2P Computing 173

3.3 Infrastructural Components

In our framework the communication between agents takes place by using the
infrastructure provided by the OPAL framework. Each collaborative worker in
our system is represented by an agent. Each of these agents is made up of micro-
agents [7]. Each micro-agent can perform certain roles. These roles could be
displaying the user interface (UI micro-agent), providing communication (com-
munications micro-agent) and process information (process micro-agent). The
agents send each other messages, the contents of which are usually text-based.
In our system we also use agents to execute process models.

This approach is open and scalable, since new participants may easily join the
collaboration environment by registering themselves with the project moderator.
The newly joined participants can interact with other team members as long as
they use the agent-based infrastructure.

4 Conclusions and Future Work

In this paper we have described how an agent-based system can be used to facil-
itate a collaborative P2P work environment. Using different scenarios, we have
demonstrated how agents can be used to coordinate, collaborate, and communi-
cate with each other in the context of a distributed software development envi-
ronment, such as an open source project. This paper reports work in progress.
We acknowledge that not all possible scenarios in distributed work environment
have been accommodated. In the future we plan to port the system, so that it
can make use of PDAs while keeping in mind the limited capabilities of smaller
devices [10].

References

1. Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed software de-
velopment. In: CSCW 2004: Proceedings of the 2004 ACM conference on Computer
supported cooperative work, pp. 72–81. ACM Press, New York (2004)

2. Froehlich, J., Dourish, P.: Unifying artifacts and activities in a visual tool for
distributed software development teams. In: ICSE, pp. 387–396 (2004)

3. Guck, R.: Managing Distributed Software Development (2006),
http://www.stickyminds.com/

4. Purvis, M.K., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A Multi-Level In-
frastructure for Agent-Oriented Software Development. In: The information science
discussion paper series no 2002/01, Department of Information Science, University
of Otago, Dunedin, New Zealand (2002)

5. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, Volume 1: Basic Concepts. In: EATCS Monographs on Theoretical Computer
Science, Springer, Heidelberg (1992)

6. Bradshaw, J.: An Introduction to Software Agents. In: Bradshaw, J. (ed.) Software
Agents, pp. 3–46. MIT Press, Cambridge (1997)

174 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

7. Nowostawski, Mariusz Purvis, M.K., Cranefield, S.: KEA - Multi-level Agent In-
frastructure. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS
(LNAI), vol. 2296, pp. 355–362. Springer, Heidelberg (2002)

8. Nowostawski, M.: JFern - Java-based Petri Net framework (2003),
http://sourceforge.net/projects/jfern/

9. Purvis, M., Purvis, M., Haidar, A., Savarimuthu, B.T.R.: A distributed work-
flow system with autonomous components. In: Barley, M.W., Kasabov, N. (eds.)
PRIMA 2004. LNCS (LNAI), vol. 3371, pp. 193–205. Springer, Heidelberg (2005)

10. Purvis, M., Garside, N., Cranefield, S., Nowostawski, M., Oliveira, M.: Multi-agent
System Technology for P2P Applications on Small Portable Devices. In: Moro, G.,
Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004. LNCS (LNAI), vol. 3601, Springer,
Heidelberg (2005)

A Peer to Peer Grid Computing System Based

on Mobile Agents

Joon-Min Gil1 and Sung-Jin Choi2

1 Department of Computer Science Education, Catholic University of Daegu
330 Geumnak, Hayang-eup, Gyeongsan-si, Gyeongbuk 712-701, Korea

jmgil@cu.ac.kr
2 Department of Computer Science and Engineering, Korea University

5-1 Anam-dong, Sungbuk-ku, Seoul 136-701, Korea
lotieye@disys.korea.ac.kr

Abstract. In a peer to peer grid computing system, volunteers (i.e., re-
source provides) with heterogeneous properties can freely join and leave
in the middle of their computation. Thus, the system should be adaptive
to a dynamic changing environment. In particular, scheduling, result cer-
tification, and replication mechanisms must be dynamic and adaptive in
such a system. In this paper, we propose a new peer to peer grid com-
puting system based on mobile agents. The proposed system constructs
volunteer groups according to volunteers’ dynamic properties such as
service time, availability, and credibility. For each volunteer groups, dif-
ferent scheduling, result certification, replication mechanisms are used.
These mechanisms are implemented as mobile agents and are conducted
in a decentralized way.

1 Introduction

A peer to peer grid computing system is a platform that achieves a high through-
put computing by harvesting a number of idle desktop computers owned by indi-
viduals (i.e., volunteers) at the edge of the Internet using peer to peer computing
technologies [1,2]. It usually supports embarrassingly parallel applications that
consist of a lot of instances of the same computation with each own data.

A peer to peer grid computing is complicated by heterogeneous capabilities,
failures, volatility (i.e., intermittent presence), and lack of trust [3,4]. The volun-
teers that are based on desktop computers at the edge of Internet, have various
capabilities (i.e., CPU, memory, network bandwidth, and latency), and are ex-
posed to link and crash failures. Moreover, they are free to join and leave in
the middle of execution without any constraints. Accordingly, they have various
volunteering times, and public execution (i.e., the execution of a task as a volun-
teer) can be stopped arbitrarily on account of unexpected leave. Since volunteers
are not totally dedicated to a peer to peer grid computing system, the public
execution can be temporarily suspended by private execution (i.e., the execution
of a private job as a personal user). These unstable situations lead to the delay
and blocking of the execution of tasks. This paper regards these situations as

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 175–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 J.-M. Gil and S.-J. Choi

volunteer autonomy failures. Volunteers have different occurrence rates for vol-
unteer autonomy failures according to their execution behaviors. Moreover, a
peer to peer grid computing system suffers from the corrupted results executed
by malicious volunteers. This is due to the voluntary participation of volunteers
without any constraints. Consequently, the system must detect and tolerate the
erroneous results to guarantee reliable execution from such an untrustworthy
environment. These distinct features make it difficult for a volunteer server to
schedule tasks and manage volunteers.

In order to improve the reliability of computation and gain better perfor-
mance, the peer to peer grid computing system should adapt to dynamic en-
vironment. However, existing systems do not provide adaptive and dynamic
scheduling, result certification, and replication mechanisms per group basis. In
addition, their mechanisms are performed only by the volunteer server in a cen-
tralized way. As a result, existing systems have high overhead and deteriorate
overall performance. To solve the problems, we propose a new peer to peer grid
computing system based on mobile agents. The proposed system applies differ-
ent scheduling, result certification, replication algorithms to the volunteer groups
that are classified on the basis of their properties such as volunteering service
time, availability, and credibility; the different algorithms are implemented as
mobile agents and are conducted in a decentralized way.

This paper organized as follows. Section 2 presents why mobile agents are
used and describes our execution model. Section 3 presents a peer to peer grid
computing system based on mobile agents in detail. In Section 4, implementation
and evaluation for our mechanism will be presented. Finally, our conclusion is
given in Section 5.

2 System Model

2.1 Why Mobile Agent?

Mobile agent technology [5] is exploited to make the scheduling mechanism adap-
tive to dynamically changing peer to peer grid computing environments. There
are some advantages of making use of mobile agents in the environments.

1) Various scheduling mechanisms can be performed at a time according to the
properties of volunteers. For example, these scheduling mechanisms can be im-
plemented as mobile agents (i.e., scheduling mobile agents). After volunteers are
classified into volunteer groups, the most suitable scheduling mobile agent for
a specific volunteer group is assigned to the volunteer group according to its
property. Existing peer to peer grid computing systems, however, cannot apply
various scheduling mechanisms because only one scheduling mechanism is per-
formed by a volunteer server in a centralized way.
2) A mobile agent can decrease the overhead of volunteer server by performing
scheduling, result certification, and replication algorithms in a decentralized way.
The scheduling mobile agents are distributed to volunteer groups. Then, they
autonomously conduct scheduling, fault tolerance, and replication algorithms in

A Peer to Peer Grid Computing System Based on Mobile Agents 177

each volunteer group without any direct control of a volunteer server. Accord-
ingly, the volunteer server does not further undergo the overhead.
3) A mobile agent can adapt to dynamically changing peer to peer grid computing
environments. In a peer to peer grid computing environment, volunteers can join
and leave at any time. In addition, they are characterized by heterogeneous prop-
erties such as capabilities (i.e., CPU, storage, or network bandwidth), location,
availability, credibility, and so on. These environmental properties are changing
over time. A mobile agent can perform asynchronously and autonomously, while
coping with these changes.

2.2 Execution Model

Fig. 1 illustrates the execution model based on mobile agents in peer to peer
grid computing environments. In the registration phase, volunteers register ba-
sic properties such as CPU, memory, OS type as well as additional properties
including volunteering time, volunteering service time, volunteer availability, vol-
unteer autonomy failures, volunteer credibility, and so on. Since these additional
properties are related to dynamical execution, they are more important than
basic properties. In the job submission phase, the submitted job is divided into
a number of tasks. The tasks are implemented as mobile agents (i.e., task mo-
bile agents: T-MA). In the task allocation phase, the volunteer server does not
perform entire scheduling anymore. Instead, it helps scheduling mobile agents
(S-MA) to perform a scheduling procedure. Initially, the volunteer server classi-
fies and constructs the volunteer groups according to properties such as location,
volunteer autonomy failures, volunteering service time, and volunteer availabil-
ity. Next, scheduling mobile agents are distributed to volunteer groups according
to their properties. Finally, each scheduling mobile agent distributes task mobile
agents to the members of its volunteer group. In the task execution phase, the
task mobile agent is executed in cooperation with its scheduling mobile agent
while migrating to another volunteer or replicating itself in the presence of fail-
ures. In the task result return phase, the task mobile agent returns each result

T-MA

Client

Volunteer

Server

Volunteers

Deputy

V
1 V

1
V
n-1

V
n

…
Job submission phase

Tasks
allocation

phase

Task result
return
phase

Tasks
Execution
phase

Job result return phasetime

…Registration
phase

V
1

V
m-1

V
m

…

Tasks
Execution
phase

Deputy

V
2

Tasks
allocation

phase
Tasks

allocation
phase

Task result
return
phase

Task result
return
phase

S-MA

S-MA

T-MA

T-MA
T-MA

T-MA
T-MA

Volunteer group Volunteer group

Fig. 1. Execution model based on mobile agents

178 J.-M. Gil and S.-J. Choi

to its scheduling mobile agent. When all task mobile agents return their results,
the scheduling mobile agent aggregates the results and then returns the collected
results to the volunteer server. In order to tolerate erroneous results, majority
voting and spot-checking mechanisms are conducted. In the job result return
phase, the volunteer server returns a final result to the client when it receives
all the results from the scheduling mobile agents.

The main differences between our model and existing ones are as follows: 1)
The new kinds of mobile agents are considered as the scheduling and task mo-
bile agents. 2) They use the volunteer groups that are constructed according to
dynamic properties of volunteers such as autonomy failures, service time, avail-
ability, and credibility. 3) Various scheduling, result certification, and replication
algorithms are performed simultaneously in a decentralized way. In fact, there
has been the use of mobile agents in the literature [6]. However, the migration
of mobile agents in master-worker model is mainly considered.

3 Peer to Peer Grid Computing System Using Mobile
Agents

This section describes a peer to peer grid computing system using mobile agents
in detail. First, it provides the construction mechanism of volunteer groups. Then,
adaptive scheduling, result certification, replication mechanisms are presented.

3.1 Volunteer Group Construction Mechanism

To apply different scheduling and result certification algorithm suitable for vol-
unteers in a scheduling phase, volunteers are required to first be formed into
homogeneous groups. Our construction mechanism classifies volunteers into four
volunteer groups on the basis of volunteer availability αv, volunteering service
time Θ, and volunteer credibility Cv.

Definition 1 (Volunteering time). Volunteering time (Υ) is the period when
a volunteer is supposed to donates its resources.

Υ = ΥR + ΥS

Here, the reserved volunteering time (ΥR) is reserved time when a volunteer
provides its computing resources. Volunteers mostly perform public execution
during ΥR, rarely private execution. On the other hand, the selfish volunteer-
ing time (ΥS) is unexpected volunteering time. During ΥS , volunteers usually
perform private execution, sometimes public execution.

Definition 2 (Volunteer availability). Volunteer availability (αv) is the prob-
ability that a volunteer will be operational correctly and be able to deliver the vol-
unteer services during volunteering time Υ

αv =
MTTV AF

MTTV AF + MTTR

A Peer to Peer Grid Computing System Based on Mobile Agents 179

Here, the MTTVAF (Mean Time To Volunteer Autonomy Failures) means the
average time before the volunteer autonomy failures happen, and the MTTR
(Mean Time To Rejoin) means the mean duration of volunteer autonomy failures.
The αv reflects the degree of volunteer autonomy failures, whereas the traditional
availability in distributed systems is mainly related with the crash failure.

Definition 3 (Volunteering service time). Volunteering service time (Θ) is
the expected service time when a volunteer participates in public execution during
Υ

Θ = Υ × αv

In scheduling procedure, Θ is more appropriate than Υ because Θ represents the
time when a volunteer actually executes each task in the presence of volunteer
autonomy failures.

Definition 4 (Volunteer credibility). Volunteer credibility Cv is the proba-
bility that represents correctness of the results which a volunteer will produce.

Cv =
CR

ER + CR + IR

Here, ER, CR, and IR mean the number of erroneous results, the number of
correct results, and the number of incomplete results, respectively. The sum of
ER, CR, and IR means the total number of tasks that a volunteer executes.
The IR occurs when a volunteer does not complete spot-checking or majority
voting on account of crash failure and volunteer autonomy failures.

When both Θ and Cv are considered in grouping volunteers, volunteer groups
are categorized into four kinds of classes (A′, B′, C′, and D′) as shown in Fig. 2.
In this figure, Δ and ϑ represent the expected computation time of a task and
the desired credibility threshold which a task achieves, respectively.

A’
(High quality)

B’
(Low-intermediate

quality)

C’
(High-intermediate-

quality)

D’
(Low quality)

vC

Fig. 2. The classification of volunteer groups

3.2 Group Based Scheduling Mechanism

Differently from existing scheduling mechanisms [7,8,9], our scheduling mecha-
nism is based on volunteer group and mobile agents.

180 J.-M. Gil and S.-J. Choi

Allocating Scheduling Mobile Agents to Scheduling Groups. After con-
structing volunteer groups, a volunteer server allocates the scheduling mobile
agents (S-MA) to volunteer groups. However, it is not practical to allocate S-
MAs directly to the volunteer groups in a scheduling procedure because some
volunteer groups are not perfect for finishing tasks reliably. Therefore, we need
making new scheduling groups by combining the volunteer groups each other:
A′D′ & C′B′, A′B′ & C′D′, and A′C′ & B′D′. In this paper, we consider the
first combination in scheduling because B′ volunteer group compensates for C′

volunteer group with regard to volunteer availability.
The S-MA is executed in the deputy volunteer which is selected among mem-

bers in A′ volunteer group. Accordingly, deputy volunteers have high volunteer
availability and volunteering service time. Also, they have enough hard-disk ca-
pacity and network bandwidth.

Distributing Task Mobile Agents to Group Members. A task mobile
agent (T-MA) consists of a parallel code and data. After S-MAs are allocated
to the scheduling groups, each S-MA distributes T-MAs to the members of the
scheduling group. The S-MAs perform different scheduling, result certification,
and replication algorithms according to the type of volunteer groups.

The S-MA of the A′D′ scheduling group performs the scheduling as follows.

1) Order the A′ volunteer group by αv and then by Θ. 2) Distribute T-MAs to
the arranged members of the A′ volunteer group. 3) If a T-MA fails, replicate
the failed task to a new volunteer selected in the A′ volunteer group by means of
the replication algorithm, or migrate the task to a volunteer selected in the A′ or
B′ volunteer groups if task migration is allowed.

The S-MA of the C′B′ scheduling group performs the scheduling as follows.
1)Order the C′ and B′ volunteer groups by αv and then by Θ. 2) Distribute T-

MAs to the arranged members of the C′ volunteer group. 3) If a T-MA fails, repli-
cate the failed task to a new volunteer selected in the ordered C′ volunteer groups,
or migrate the task to a volunteer selected in the B′ or C′ volunteer groups.

Tasks are firstly distributed to the A′D′ scheduling group and then the C′B′

scheduling group. They are also distributed to the volunteers with high αv and
long Θ. In our scheduling, if checkpointing is not used, tasks are not allocated
to the B′ and D′ volunteer groups, because they have insufficient time to finish
the task reliably. In this case, the B′ and D′ volunteer groups execute tasks for
testing, i.e., to measure their properties. For example, the tasks executed in the
A′ and C′ volunteer groups are redistributed to the D′ and B′ volunteer groups,
respectively. However, the B′ volunteer group can be used to assist the main
volunteer groups (i.e., A′ or C′) if task migration is permitted. The volunteer
group B′ in the scheduling group C′B′ can be used to compensate for the C′

volunteer group with regard to volunteer availability. Suppose that a volunteer
in the C′ volunteer group suffers from volunteer autonomy failures. If the vol-
unteering time of a volunteer in the B′ volunteer group implies the duration
of volunteer autonomy failures at the failed volunteer, the suspended task can
migrate to a new volunteer in the B′ volunteer group.

A Peer to Peer Grid Computing System Based on Mobile Agents 181

3.3 Group Based Replication Mechanism

The group based replication mechanism automatically adjusts the number of
redundancy, and selects an appropriate replica according to the properties of
each volunteer group.

How to calculate the number of redundancy. If replication is used, each
S-MA calculates the number of redundancy for its volunteer group. It exploits
volunteer autonomy failures, volunteer availability, and volunteering service time
simultaneously when calculating the number of redundancy.

In a peer to peer grid computing environment, volunteer autonomy failures
occur much more frequently than crash and link failures. Moreover, the rates
and types of volunteer autonomy failures are various. Accordingly, the number
of redundancy must be calculated on the basis of volunteer groups that have
similar rate and types of volunteer autonomy failures in order to reduce the
replication overhead.

On the assumption that the lifetime of a system is exponentially distributed
[7,10], the number of redundancy r for reliability is calculated by

(1 − e−Δ/τ ′
)r ≤ 1 − γ

τ ′ = (V0 · τ + V1 · τ + · · · + Vn · τ)/n (1)

where, τ and τ ′ represent the MTTVAF of a volunteer and the MTTVAF of
a volunteer group, respectively; n is the total number of volunteers within a
volunteer group; Vn · τ means τ of a volunteer Vn; γ is the reliability threshold.

In (1), the term e−
Δ
τ′ represents the reliability of each volunteer group, which

means the probability to complete the tasks within Δ. It reflects volunteer au-
tonomy failures. The (1 − e−

Δ
τ′)r means the probability that all replicas fail

to complete the replicated tasks. If the required reliability γ is provided, the
value of r is calculated using (1). Each volunteer group has different r; e.g., the
volunteer group A′ and C′ have smaller r than the volunteer group B′.

How to distribute T-MAs to replicas. The methods of distributing tasks to
replicas are categorized into two approaches: parallel distribution and sequential
distribution. In the parallel distribution (Fig. 3(a)), the task Tm is distributed to
all members (V0, V1, and V2), and then executed simultaneously. In the sequential
distribution (Fig. 3(b)), the Tm is distributed and executed sequentially.

In the case of the A′ volunteer group, sequential distribution is more appropri-
ate than parallel distribution because the former can complete more tasks. For
example, in Fig. 3(b), if V0 completes the task Tm, there is no need to execute it
at V1 and V2. If the A′ volunteer group performs parallel distribution, it exhibits
the overhead of replication in the sense that volunteers execute the same tasks
even though they are able to execute other tasks. In contrast to the A′ volun-
teer group, in the case of the C′ volunteer group, sequential distribution is more
appropriate than parallel because the C′ volunteer group frequently suffers from
volunteer autonomy failures owing to a low αv.

182 J.-M. Gil and S.-J. Choi

Fig. 3. Parallel and sequential distribution

3.4 Group Based Result Certification Mechanism

Result certification is dynamically applied to each volunteer group as follows:
the A′ volunteer group has high possibility that produce correct results. If vot-
ing is used for result certification, the sequential voting group approach is more
appropriate than the parallel one because the former can perform more tasks.
For example, in the case of the Tm+2 task in Fig. 3(b), if first two results gen-
erated at V1 and V2 are same, there is no need to execute the Tm+2 task at V0

because majority (i.e., 2 out of 3) is already achieved. As a result, other tasks
can be executed instead of the executions that the solid line in Fig. 3(b) includes.
The B′ volunteer group has high possibility that produce correct results, but it
cannot complete their tasks because of lack of the computation time. Moreover,
volunteer autonomy failures occur frequently in the middle of execution. In the
case of task migration, a previous volunteer affects the result of the volunteer to
which a task is migrated. Accordingly, the migrated volunteer must be chosen
among the B′ or A′ volunteer groups. The sequential voting group is appropriate
like the case of the A′ volunteer group. The C′ volunteer group has enough time
to execute tasks, but its results might be incorrect. To strength the credibility,
the C′ volunteer group requires more spot-checking and redundancy than the
A′ or B′ volunteer group. The parallel voting group is more appropriate than
the sequential voting group. Lastly, the D′ volunteer group has insufficient time
to execute tasks and there is little possibility to produce correct results. More-
over, volunteer autonomy failures occur frequently in the middle of execution.
Accordingly, it is beneficial that tasks are not allocated to this volunteer group.

According to the above strategies, each S-MA has its own scheduling algorithm
for result certification. In general, the tasks are scheduled in the following order:
A′, C′, and B′.

The S-MA performs scheduling for result certification as follows: 1) Order
each volunteer group by αv, Θ, and Cv. 2) Evaluate the number of redundancy
or spot-checking rate. 3) Construct a sequential voting group, or choose some
volunteers for spot-checking on the basis of Θ and Cv . 4) Distribute tasks in
a way of sequential voting group, or allocate special tasks for spot-checking. 5)
Check the collected results.

In second phase, the number of redundancy for majority voting and the num-
ber of spot-checking are differently applied to each volunteer group. The number
of redundancy for majority voting is dynamically regulated by each scheduling
agent. The final error rate of majority voting [7] is evaluated by

A Peer to Peer Grid Computing System Based on Mobile Agents 183

ε(C′
v, r) =

2k+1∑
i=k+1

(
2k + 1

i

)
(1 − C′

v)i(C′
v)(2k+1−i) (2)

which is bounded by [4C′
v(1−C′

v)]k+1

2(2C′
v−1)

√
πk

. Here, the parameter C′
v means the proba-

bility that volunteers within each volunteer group generate correct results.
Consider the desired credibility threshold ϑ. Our mechanism calculates the

number of redundancy for each volunteer group if (1 − ϑ) ≥ ε(C′
v, r). Conse-

quently, the A′ and B′ volunteer groups have a small r, so it can reduce the
overhead of majority voting and execute more tasks. In contrast, the C′ volun-
teer group has a large r. The large r makes the credibility high.

The rate of spot-checking q is also regulated by each scheduling agent. The
final error rate of spot-checking [1] is evaluated by

ε(q, n, C′
v, s) =

sC′
v(1 − qs)n

(1 − C′
v) + C′

v(1 − qs)n
(3)

where, n and s are the saboteur’s share in the total work and the sabotage rate
of a saboteur, respectively.

In a similar way of majority voting, if n and s are given, the spot-checking rate
q of each volunteer group can be calculated using (3). Our mechanism calculates
the rate of spot-checking for each volunteer group when (1 − ϑ) ≥ ε(q, n, C′

v, s).
The rate of spot-checking for the A′ and B′ volunteer groups are smaller than
that of the C′ volunteer group. Accordingly, the A′ and B′ volunteer groups can
reduce the overhead, and thus execute more tasks. The C′ volunteer group can
increase its credibility.

4 Implementation and Evaluation

4.1 Implementation Status

We have developed the ”Korea@Home” [9], which attempts to harness the mas-
sive computing power of the great numbers of PCs distributed over Internet.
Fig. 4 shows an execution screen shot in Korea@Home. Volunteers can take part
in one of four kinds of applications: new drug candidate discovery, rainfall fore-
cast, climate prediction, and optical analysis of TFT-LCD. The CPU types of
volunteers are somewhat various, but the majority demonstrates similar CPU
performance. For example, the Intel Pentium 4 consists of approximately 58% of
the total, the Pentium III represents approximately 13%, the Celeron represents
approximately 4%, and so on.

4.2 Simulations

We compare our group-based adaptive scheduling, result certification, and repli-
cation mechanisms with eager scheduling. For three kinds of cases, we evaluate
200 volunteers during one hour (see Table 1). Case 1 is different from Case 2 with

184 J.-M. Gil and S.-J. Choi

Fig. 4. Screen shot of Korea@Home

Table 1. Simulation Environment

A’ B’ C’ D’ Total

of vol. 84 (42%) 26 (13%) 70 (35%) 20 (10%) 200
Case 1 αv 0.84 0.88 0.81 0.83 0.84

Θ 41 17 39 16 35 min.
Cv 0.98 0.98 0.88 0.86 0.93

of vol. 71 (35.5%) 31 (15.5%) 76 (38%) 22 (11%) 200
Case 2 αv 0.86 0.78 0.80 0.71 0.81

Θ 35 17 33 16 30 min.
Cv 0.98 0.98 0.82 0.85 0.91

of vol. 42 (21%) 59 (29.5%) 30 (15%) 69 (34.5%) 200
Case 3 αv 0.80 0.70 0.78 0.69 0.73

Θ 28 12 25 13 24 min.
Cv 0.98 0.98 0.89 0.89 0.94

of vol.: the number of volunteers

regard to volunteer availability and volunteer availability. On the other hand,
Case 3 is different form Case 1 with respect to volunteer availability and volun-
teering service time. Each simulation are repeated 10 times for each case. For
simulation, the mean volunteering time of volunteers is selected in the range [10,
60] min. We also assume that MTTV AF=1/0.2∼1/0.05 min. and MTTR=3∼10
min. A task in the application exhibits 18 minutes of execution time on a ded-
icated Pentium 1.4GHz. The s and n for spot-checking are assumed to be 0.1
and 10, respectively.

Fig. 5 shows total number of completed tasks for scheduling mechanism with
or without result certification. In this figure, ES and GAS represents eager
scheduling and our mechanism, respectively. From Fig. 5, we observe that our
mechanism completes more tasks than eager scheduling for all cases. In partic-
ular, the A′ volunteer group has an important role in obtaining better perfor-
mance. As the number of members in the A′ volunteer group increases gradually
(i.e., from Case 3 to Case 1), the number of completed tasks becomes higher. In
contrast, as the number of members in D′ volunteer group increases, the num-
ber of completed tasks becomes lower. Also, we see that volunteer availability

A Peer to Peer Grid Computing System Based on Mobile Agents 185

0

50

100

150

200

250

 (a) Not applied
Case3Case1

To
ta

l n
um

be
r o

f t
as

ks

 ES
 GAS

Case2

0

10

20

30

40

50

60

70

80

90

100

110

To
tal

 n
um

be
r o

f t
as

ks

(b) Majority voting

 ES
 GAS

Case3Case1 Case2
0

20

40

60

80

100

120

140

160

180

200

220

To
tal

 n
um

be
r o

f t
as

ks

(c) Spot-checking

 ES
 GAS

Case3Case1 Case2

Fig. 5. The number of completed tasks

Fig. 6. The number of redundancy & spot-checking rate

is tightly related with performance; e.g., Case 1 can complete more tasks than
Cases 2 and 3.

In the case of majority voting, our mechanism obtains more results of tasks
than eager scheduling because it dynamically decides the number of redundancy
according to properties of volunteer groups (see Fig. 6(a)). The A′ and B′ vol-
unteer groups choose less redundancy than the C′ volunteer group. As a result,
the A′ and B′ volunteer groups are able to reduce the replication overhead, and
so they can execute more tasks. The result of spot-checking is similar to that of
majority voting (see Fig. 6(b)). This is because our mechanism can dynamically
decide spot-checking rate according to properties of volunteer groups.

186 J.-M. Gil and S.-J. Choi

5 Conclusion

In this paper, we proposed a new peer to peer grid computing system based on
mobile agents, which adapts to a dynamic environment. The proposed system
applies different scheduling, result certification, and replication mechanisms to
volunteer groups. As a result, it can reduce the overhead of a volunteer server
by using adaptive mobile agents for each volunteer group in a distributed way.
Moreover, the group based scheduling, replication, result certification mecha-
nisms can complete more tasks than existing mechanism.

References

1. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing sys-
tems. Future Generation Computer Systems 18, 561–572 (2002)

2. Neary, M.O., Cappello, P.: Advanced eager scheduling for Java-based adaptive
parallel computing. Concurrency and Computation: Practice and Experience 17,
797–819 (2005)

3. Kondo, D., Chien, A.A., Casanova, H.: Resource management for rapid applica-
tion turnaround on enterprise desktop grids. In: ACM Conf. on High Performance
Computing and Networking, pp. 19–30 (2004)

4. Lo, V., Zhou, D., Zappala, D., Liu, Y., Zhao, S.: Cluster computing on the fly:
P2P scheduling of idle cycles in the Internet. In: Voelker, G.M., Shenker, S. (eds.)
IPTPS 2004. LNCS, vol. 3279, pp. 227–236. Springer, Heidelberg (2005)

5. Lo, V., Zhou, D., Zappala, D., Liu, Y., Zhao, S.: Oddugi mobile agent system
(2004), http://oddugi.korea.ac.kr

6. Ghanea-Hercock, R., Collis, J.C., Ndumu, D.T.: Co-operating mobile agents for
distributed parallel processing. In: Proc. of the Third Int. Conf. on Autonomous
Agents (AA 1999), pp. 398–399 (1999)

7. Zuev, Y.A.: On the estimation of efficiency of voting procedures. Theory of Prob-
ability & Its Applications 42, 78–81 (1998)

8. Li, Y., Mascagni, M.: Improving performance via computational replication on a
large-scale computational grid. In: 3rd IEEE/ACM Int. Symp. on Cluster Com-
puting and the Grid, pp. 442–448 (2003)

9. Li, Y., Mascagni, M.: Korea@home (2003), http://www.koreaathome.org/eng/
10. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer

Science Applications. Wiley, Chichester (2002)

Author Index

Alcock, Michael 159
Atkins, Graham 159

Bakhouya, Mohamed 63

Cabanillas, David 151
Carchiolo, Vincenza 135
Choi, Sung-Jin 175
Cholvi, Vicent 31

Despotovic, Zoran 19

Fernández, Antonio 31

Gaber, Jaafar 63
Gil, Joon-Min 175
Gylfason, Halldor Isak 74

Hong, Sung Je 43, 111
Huey, Paul 159

Joseph, Samuel R.H. 1

Kanawati, Rushed 51
Karoui, Hager 51
Kellerer, Wolfgang 19
Khan, Omar 74
Kim, Jong 43, 111
Kwon, O-Hoon 43, 111

López, Luis 31
Lee, So Young 111

Malgeri, Michele 135
Mangioni, Giuseppe 135

Nicosia, Vincenzo 135

Ogston, Elth 98

Paranjape, Raman 1
Petrucci, Laure 51
Pirro’, Giuseppe 86
Purvis, Martin 167
Purvis, Maryam 167

Rhee, Kyung-Hyune 143
Rodero Merino, Luis 31
Roh, Bong-Soo 43
Ruffolo, Massimo 86

Savarimuthu, Bastin Tony Roy 167
Schoenebeck, Grant 74
Schubert, Simon 19
Şensoy, Murat 123
Shin, Jung-Hwa 143
Shin, Weon 143
Shingler, Steven 159

Talia, Domenico 86
Tse, Ben 1

Vaughan, Jonathan 159
Vaughan, Richard 159

Willmott, Steven 151
Wise, James 159

Yolum, Pınar 123

Zoels, Stefan 19

	Title Page
	Preface
	Organization
	Table of Contents
	Information Flow Analysis in Autonomous Agent and Peer-to-Peer Systems for Self-organizing Electronic Health Records
	Introduction
	Electronic Health Records
	Mobile Agent Technology

	Agent System Dynamics and Analysis
	The Agent-Based Electronic Health Record System
	System Components

	Experimental Validation
	Simulation Structure and Conditions
	Simulation Results
	Mathematical Modeling
	Modeling Results

	Peer to Peer
	Development of an Equivalent Peer-to-Peer System
	Simulation Method

	Conclusion
	References

	Hybrid DHT Design for Mobile Environments
	Introduction
	Distributed Hash Tables - Overview
	Hybrid DHT Design
	Simulations
	Simulation Setup
	Simulation Results

	Conclusion

	DANTE: A Self-adapting Peer-to-Peer System
	Introduction
	DANTE
	Resource Searches in DANTE
	DANTE Self-adaptation Mechanism
	Peer Sampling
	DANTE Robustness

	DANTE at Work
	Experimental Setup
	Topology Adaptation
	Performance
	Scalability

	Related Work
	Conclusions

	The Exclusion of Malicious Routing Peers in Structured P2P Systems
	Introduction
	Related Works
	Adversary Model
	Characteristics of the System
	Extended Routing Table
	TCR(Total Claim Ratio)
	Query Observation and Alternate Lookup Path

	The Exclusion Routing Protocol
	Claim Process
	Verification Process
	Replication

	Simulation Results
	Conclusion

	Cooperative CBR System for Peer Agent Committee Formation
	Introduction
	System Overview
	Committee Formation
	Experimentation
	Related Work
	Conclusion

	Mobile Agent-Based Approach for Resource Discovery in Peer-to-Peer Networks
	Introduction
	Related Work
	The Resource Discovery Approach
	Simulation Results
	Conclusion

	Chora: Expert-Based P2PWeb Search
	Introduction
	System Architecture
	Query Setup
	Phase 1 - Sketch Query
	Phase 2 - Peer Query

	Search Quality
	Sketches
	Ranking and Aggregation

	Evaluation
	Related Work
	Conclusions

	K-link: A Peer-to-Peer Solution for Organizational Knowledge Management
	Introduction
	K-link Architecture
	K-link Low-Level Architecture
	K-link Services
	K-link High-Level Architecture
	K-link Node
	K-link Main Components
	K-link Main Roles

	The K-link Ontology Scenario
	The Upper Ontology
	The COKE Ontologies

	K-link in a Nutshell
	Related Works
	Conclusions and Research Issues

	An Analysis of Interest-Community Facilitated Peer-to-Peer Search
	Introduction
	Related Work
	Experimental Setup and Methodology
	Overlay Structures and Search Methods
	Experimental Design
	Data Sets

	Experimental Results
	Hit Rates
	Load Balancing
	Determining Clusters

	Conclusions and Discussion

	Mitigating the Impact of Liars by Reflecting Peer’s Credibility on P2P File Reputation Systems
	Introduction
	Related Works
	Feedback Only Reputation Scheme
	Considerations for Credibility
	Credibility Repository
	Credibility Computation
	Trust Computation of File

	The Reputation Management Protocol
	Join and Publish
	Query and Response
	Select a File
	Update Credibility and Submit Evaluation

	Performance Evaluation
	Simulation Results

	Conclusion and Future Works

	A Comparative Study of Reasoning Techniques for Service Selection
	Introduction
	Representation of Experiences
	Retrieving Experiences
	Service Selection Using Parametric Classification
	Case-Based Service Selection
	Simulations
	Simulation Environment and Settings
	Simulation Results

	Discussion

	PROSA: P2P Resource Organisation by SocialAcquaintances
	Introduction
	Social Relationships and Small--World
	The Social Model
	Building a Social P2P Network
	Modelling Knowledge
	Managing Connections
	Comments on the Algorithm

	Conclusions and Future Work

	Reliable P2P File Sharing Service
	Introduction
	Related Works
	Peer-to-Peer
	The Consideration in P2P File Sharing Service
	Reputation-Based File Sharing System

	Reliable P2P File Sharing Service Model
	Notations
	Operations

	Analysis
	Conclusion

	Studying Viable Free Markets in Peer-to-Peer File Exchange Applications without Altruistic Agents
	Introduction
	Token Based Markets for P2P File Sharing Environments
	Types of Market Scenario
	Time Limited Markets
	Content Limited Markets
	Time and Content Unlimited Markets

	Experimental Evaluation
	Experimental Results
	Evaluation Results and Discussion

	Conclusion and Outlook

	Distributed Multi-layered Network Management for NEC Using Multi-Agent Systems
	Introduction
	Management of Existing UK Military Radio Networks
	Our Approach
	System Policies

	Experiment Case Study
	Results
	Conclusions

	Facilitating Collaboration in a Distributed Software Development Environment Using P2P Architecture
	Introduction
	Background
	Collaborative Work in Open Source Software Development
	An Overview of Collaborative Work
	Scenario Description
	Infrastructural Components

	Conclusions and Future Work

	A Peer to Peer Grid Computing System Based on Mobile Agents
	Introduction
	System Model
	Why Mobile Agent?
	Execution Model

	Peer to Peer Grid Computing System Using Mobile Agents
	Volunteer Group Construction Mechanism
	Group Based Scheduling Mechanism
	Group Based Replication Mechanism
	Group Based Result Certification Mechanism

	Implementation and Evaluation
	Implementation Status
	Simulations

	Conclusion

	Author Index

